
VANDERBILT UNIVERSITY

MATH 2420 – METHODS OF ORDINARY DIFFERENTIAL EQUATIONS

Practice for test 2 – solutions

Directions: This practice test should be used as a study guide, illustrating the concepts that will
be emphasized in the test. This does not mean that the actual test will be restricted to the content
of the practice. Try to identify, from the questions below, the concepts and methods that you
should master for the test. For each question in the practice test, study the ideas and techniques
connected to the problem, even if they are not directly used in your solution.

Take this also as an opportunity to practice how you will write your solutions in the test. For
this, write clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an
equal sign if two expressions are equal; say that one expression is a consequence of another when
this is the case, etc.).

The first test will cover all material discussed from (including) section 6.1 to (including) section
7.9. (Note that sections 1.3 and 1.4 will not be in the test.)
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2 VANDERBILT

The table below indicates the Laplace transform F (s) of the given function f(t).

f(t) F (s)

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

tneat n!
(s−a)n+1

cos(kt) s
s2+k2

sin(kt) k
s2+k2

eat cos(kt) s−a
(s−a)2+k2

eat sin(kt) k
(s−a)2+k2

The following are the main properties of the Laplace transform.

Function Laplace transform
af(t) + bg(t) aF (s) + bG(s)
f ′(t) sF (s)− f(0)
f ′′(t) s2F (s)− sf(0)− f ′(0)

f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)
eatf(t) F (s− a)

tnf(t) (−1)n dn

dsnF (s)
(f ∗ g)(t) F (s)G(s)

u(t− a) e−as

s
f(t− a)u(t− a) e−asF (s)

Above, f ∗ g is the convolution of f and g, given by

(f ∗ g)(t) =

∫ t

0
f(t− τ)g(τ) dτ,

and u(t− a) is given by

u(t− a) =

{
0, t < a,

1, t > a.
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Question 1. Solve the following differential equations.

(a) x′′′ − 3x′′ + 4x = 0.

(b) x′′′ − 3x′′ − x′ + 3x = 0

(c) x′′′′ + 4x′′ + 4x = 0.

Solution 1. (a) The characteristic equation is λ3 − 3λ2 + 4 = 0. Recall the following method for
finding a root of a cubic or higher polynomial equation: we try to guess a solution by plugging in
numbers that divide the term without λ, in this case ±1,±2,±4 (if there is no term without λ,
then zero is a solution). Plugging in −1 we find that it is a root. Next, we factor the polynomial
by λ− root = λ− (−1) = λ+ 1. Since factoring a degree one polynomial produces a polynomial of
one degree lower (two in this case) we know that

(λ+ 1)(Aλ2 +Bλ+ C) = λ3 − 3λ2 + 4.

To figure out A, B, and C, we compare both sides. It is easier to star comparing the terms in
highest power of λ and without λ. For the former, the only term on the left hand side that produces
a λ3 is λ×Aλ2 = Aλ3, so we must have A = 1. For the latter, the only term on the left hand side
that produces no λ is 1× C = C, so we must have C = 4. Hence

(λ+ 1)(λ2 +Bλ+ 4) = λ3 − 3λ2 + 4.

There is no term with λ to the power one on the right hand side, while there are two such terms on
the left hand side, λ× 4 = 4λ and 1×Bλ = Bλ, so we must have 4λ+Bλ = 0 and thus B = −4.
Hence λ3 − 3λ2 + 4 = (λ − 4λ + 4)(λ + 1) = (λ − 2)2(λ + 1). Using the corresponding form of
solutions given in class, we conclude that

x(t) = c1e
−t + c2e

2t + c3te
2t.

(b) The characteristic equation is λ3 − 3λ2 − λ+ 3 = 0 = (λ+ 1)(λ− 3)(λ− 1), where we used
the method discussed in (a) to factor the polynomial. Thus,

x(t) = c1e
−t + c2e

3t + c3e
t.

(c) The characteristic equation is λ4 + 4λ2 + 4, which we recognize as a perfect square in λ2:
λ4 + 4λ2 + 4 = (λ2 + 2)2. Thus the roots are λ = ±

√
2i with multiplicity two and we conclude

x(t) = c1 cos(
√

2t) + c2 sin(
√

2t) + c3t cos(
√

2t) + c4t sin(
√

2t).
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Question 2. Recall that a function f is said to be of exponential order α > 0 if there exist positive
constants T and M such that

|f(t)| ≤Meαt, for all t ≥ T.
Which of the following functions are of exponential order?

(a) t ln t.

(b) et
3
.

(c)
1

t2 + 1
.

Solution 2. (a) One method to determine whether a given function f(t) is of exponential order is
the following. We compute

lim
t→∞

f(t)

eαt
,

with α > 0. If the limit is a finite number, then |f(t)eαt | has to remain bounded for t sufficiently large
and, therefore, there must exist constants T and M such that for t ≥ T we have∣∣∣∣f(t)

eαt

∣∣∣∣ ≤M or |f(t)| ≤Meαt.

With f(t) = t ln t we find that for any α > 0

lim
t→∞

t ln t

eαt
= 0,

where we used L’Hospital rule to compute the limit. Thus, t ln t is of exponential order. (To be
of exponential order it suffices to find some α; thus, we could, for example, have taken α = 1 and
computed limt→∞

t ln t
et = 0.)

(b) From the discussion of part (a) we see that if

lim
t→∞

∣∣∣∣f(t)

eαt

∣∣∣∣ =∞

for any α > 0 then f(t) is not of exponential order. In our case

lim
t→∞

∣∣∣∣∣ et
3

eαt

∣∣∣∣∣ = lim
t→∞

et
3−αt =∞

since for any α we have limt→∞(t3 − αt) =∞ and e∞ =∞, thus et
3

is not of exponential order.
(c) We can proceed as in part (a). However, it is quicker to note that 1

t2+1
≤ 1 for any t and

et ≥ 0 for all t ≥ 0, thus 1
t2+1

≤ et for t ≥ 0 and 1
t2+1

is of exponential order.
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Question 3. Determine L −1{F}. You do not need to determine the constants of the partial
fractions.

(a) F (s) =
5s2 + 34s+ 53

(s+ 3)2(s+ 1)
.

(b) s2F (s) + sF (s)− 6F (s) =
s2 + 4

s2 + s
.

(c) sF (s) + 2F (s) =
10s2 + 12s+ 14

s2 − 2s+ 2
.

(d) F (s) = ln

(
s2 + 9

s2 + 1

)
.

Solution 3. (a) The partial fractions reads

5s2 + 34s+ 53

(s+ 3)2(s+ 1)
=

A

s+ 1
+

B

s+ 3
+

C

(s+ 3)2

so that

L −1{5s2 + 34s+ 53

(s+ 3)2(s+ 1)
} = AL −1{ 1

s+ 1
}+BL −1{ 1

s+ 3
}+ CL −1{ 1

(s+ 3)2
}

= Ae−t +Be−3t + Cte−3t.

(b) Factoring F (s) and applying partial fractions we have

F (s) =
s2 + 4

(s2 + s)(s2 + s− 6)
=

s2 + 4

s(s+ 1)(s− 2)(s+ 3)

=
A

s
+

B

s+ 1
+

C

s− 2
+

D

s+ 3
,

so that

L −1{ s2 + 4

(s2 + s)(s2 + s− 6)
} = AL −1{1

s
}+BL −1{ 1

s+ 1
}+ CL −1{ 1

s− 2
}+DL −1{ 1

s+ 3
}

= A+Be−t + Ce2t +De−3t.

(c) Factoring F (s) and applying partial fractions we have

F (s) =
10s2 + 12s+ 14

(s2 − 2s+ 2)(s+ 2)
=

10s2 + 12s+ 14

((s− 1)2 + 1)(s+ 2)

=
A

s+ 2
+
B(s− 1) + C

(s− 1)2 + 1
=

A

s+ 2
+

B(s− 1)

(s− 1)2 + 1
+

C

(s− 1)2 + 1
,

so that

L −1{ 10s2 + 12s+ 14

(s2 − 2s+ 2)(s+ 2)
} = AL −1{ 1

s+ 2
}+BL −1{ (s− 1)

(s− 1)2 + 1
}+ CL −1{ 1

(s− 1)2 + 1
}

= Ae−2t +Bet cos t+ Cet sin t.
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(d) Write

F (s) = ln

(
s2 + 9

s2 + 1

)
= ln(s2 + 9)− ln(s2 + 1)

and

dF (s)

ds
=

d

ds
ln(s2 + 9)− d

ds
ln(s2 + 1)

=
2s

s2 + 9
− 2s

s2 + 1
=
As+B

s2 + 9
+
Cs+D

s2 + 1

=
As

s2 + 9
+

B

s2 + 9
+

Cs

s2 + 1
+

D

s2 + 1
.

Thus

L −1{dF (s)

ds
} = AL −1{ s

s2 + 9
}+BL −1{ 1

s2 + 9
}+ CL −1{ s

s2 + 1
}+DL −1{ 1

s2 + 1
}

= A cos(3t) +
1

3
B sin(3t) + C cos t+D sin t.

Using tf(t) = −L −1{dFds } we find

L −1{F (s)} = −1

t
L −1{dF (s)

ds
} = −1

t
(A cos(3t) +

1

3
B sin(3t) + C cos t+D sin t).
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Question 4. Solve the given initial value problem using the method of Laplace transforms. You
do not need to determine the constants of the partial fractions.

(a) y′′ − y′ − 2y = 0, y(0) = −2, y′(0) = 5.

(b) y′′ + y = t, y(π) = 0, y′(π) = 0.

(c) y′′ + 5y′ − 6y = 21et−1, y(1) = −1, y′(1) = 9.

Solution 4. (a) Taking the Laplace transform and using its properties we find

Y (s) =
−2s+ 7

(s− 2)(s+ 1)
=

A

s− 2
+

B

s+ 1
,

so that y(t) = Ae3t +Be−t.
(b) We need to shift t so we introduce w(t) = y(t + π). Then w′′ + w = t + π and taking the

Laplace transform we find

W (s) =
1 + πs

s2(s2 + 1)
=
A

s
+
B

s2
+
Cs+D

s2 + 1

=
A

s
+
B

s2
+

Cs

s2 + 1
+

D

s2 + 1
.

Then

w(t) = A+Bt+ C cos t+D sin t.

Thus y(t) = w(t− π) = A+B(t− π) + C cos(t− π) +D sin(t− π).

(c) This is similar to (b). The answer is y(t) = Aet−1 +Be−6(t−1).
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Question 5. Use convolution to obtain a formula for the solution to the given initial value problem,
where g is piecewise continuous on [0,∞) and of exponential order.

(a) y′′ + 9y = g(t), y(0) = 1, y′(0) = 0.

(b) y′′ + 4y′ + 5y = g(t), y(0) = 1, y′(0) = 1.

Solution 5. (a) By the superposition principle we can write y = x+z, where x′′+9x = g(t), x(0) =
0, x′(0) = 0, and z′′ + 9z = 0, z(0) = 1, z′(0) = 0. We fin z(t) = c1 cos(3t) + c2 sin(3t), where c1
and c2 are constants determined from the given initial conditions. Next, we find h(t) as

h(t) = L −1{ 1

s2 + 9
} =

1

3
sin(3t).

Then, as done in class, as have

y(t) = z(t) +
1

3
g(t) ∗ sin(3t).

(b) Similar to (a). The answer is y(t) = z(t) + g(t) ∗ (e−2t sin t).
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Question 6. Solve the given integro-differential equation for y(t).

y′(t) +

∫ t

0
(t− τ)y(τ) dτ = t,

y(0) = 0.

Solution 6. Write the equation as

y′(t) + t ∗ y(t) = t

Then

sY (s) +
1

s2
Y (s) =

1

s2
,

so that

Y (s) =
1

s3 + 1
=

1

(s+ 1)(s2 − s+ 1)
=

1

(s+ 1)((s− 1/2)2 + (
√

3/2)2)

=
1

3

1

s+ 1
+

1

3

2− s
(s− 1/2)2 + (

√
3/2)2)

=
1

3

1

s+ 1
− 1

3

s− 1/2

(s− 1/2)2 + (
√

3/2)2)
+

1√
3

√
3/2

(s− 1/2)2 + (
√

3/2)2)
.

Thus

y(t) =
1

3
e−t − 1

3
e
t
2 cos(

√
3

2
t) +

1√
3
e
t
2 sin(

√
3

2
t).
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Question 7. Solve the given initial value problem.

(a) y′′ + y = δ(t− π

2
), y(0) = 0, y′(0) = 1.

(b) y′′ + y = δ(t− π)− δ(t− 2π), y(0) = 0, y′(0) = 1.

Solution 7. (a) Applying the Laplace transform we find

Y (s) =
1

s2 + 1
+ e−

π
2
s 1

s2 + 1

so that

y(t) = sin t+ sin(t− π

2
)u(t− π

2
).

(b) Similar to part (a). The answer is y(t) = sin t+ sin(t− π)u(t− π) + sin(t− 2π)u(t− 2π).
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Question 8. Review the homework problems, results proved in class, and examples posted in the
course webpage.

Solution 8. N/A.


