
VANDERBILT UNIVERSITY

MATH 234 — INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

PRACTICE FINAL SOLUTIONS.

Disclaimer: I cannot guarantee that these solutions are typo-free!

Question 1. Solve the following initial-boundary value problem
usr = 0, s ≥ −r,−∞ < r <∞,
u(−r, r) = F (r), −∞ < r <∞,
us(−r, r) = G(r), −∞ < r <∞,

where u = u(s, r) is the unknown, and F and G are given C∞ functions.
Hint: Change variables t = s+ r, x = s− r.
Solution. Let {

t = s+ r, (1a)

x = s− r, (1b)

which gives 
ts = 1, (2a)

tr = 1, (2b)

xs = 1, (2c)

xr = −1, (2d)

where ts is ∂t
∂s , and so on. Let

u(s, r) = u(t(s, r), x(s, r)).

Using the chain rule,

us = utts + uxxs

= ut + ux,

where we used (2a) and (2c). Differentiating again and using (2b) and (2d),

usr = utttr + utxxr + uxttr + uxxxr

= utt − utx + uxt − uxx
= utt − uxx.

Thus, usr = 0 ⇔ utt − uxx = 0, and we see that the original equation is simply the wave equation
written in a different set of coordinates. For the initial conditions, we see from (1) that

u(−r, r) = u(0,−x
2

),

and

us(−r, r) = ut(0,−
x

2
) + ux(0,−x

2
).

Hence,

u(0, x) = F (x), ut(0, x) = G(x)− Fx(x).

From these formulas the solution is now easily found via an application of D’Alembert’s formula.
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Question 2. Let u(t, x) be a solution to the following initial-value problem:{
utt − uxx = f(t, x), −∞ < x <∞, t > 0,

u(0, x) = g(x), ut(0, x) = h(x), −∞ < x <∞,

where f , g, and h are C∞ functions. Assume that there exist numbers X, Y , and Z, such that

|f(t, x)| ≤ X, |g(x)| ≤ Y, |h(x)| ≤ Z,

for all t ≥ 0, x ∈ R. Show that for any t > 0, and any x ∈ R, it holds that

|u(t, x)| ≤ Y + tZ +
1

2
Xt2.

Hint: D’Alembert and Duhamel.
Solution. By uniqueness, u can be written as

u = w + v, (3)

where w and v are, respectively, solutions to{
vtt − vxx = 0, −∞ < x <∞, t > 0,

v(0, x) = g(x), vt(0, x) = h(x), −∞ < x <∞,
(4)

and {
wtt − wxx = f(t, x), −∞ < x <∞, t > 0,

w(0, x) = 0, wt(0, x) = 0, −∞ < x <∞.
(5)

Problem (4) is solved with D’Alembert’s formula

v(t, x) =
g(x− t) + g(x+ t)

2
+

1

2

∫ x+t

x−t
h(y) dy,

so that

|v(t, x)| ≤ 1

2
|g(x− t)|+ 1

2
|g(x+ t)|+ 1

2

∫ x+t

x−t
|h(y)| dy

≤ 1

2
Y +

1

2
Y +

1

2

∫ x+t

x−t
Z dy

= Y + tZ.

(6)

Problem (5) is solved using Duhamel’s formula, i.e., w is given by

w(t, x) =

∫ t

0
z(t− s, s, x) ds, (7)

where z = z(t, s, x) solves{
ztt − zxx = 0, −∞ < x <∞, t > 0,

z(0, s, x) = 0, zt(0, s, x) = f(s, x), −∞ < x <∞.
(8)

Problem (8), in turn, is solved via an application of D’Alembert’s formula,

z(t, s, x) =
1

2

∫ x+t

x−t
f(s, y) dy.
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Then

|z(t, s, x)| ≤ 1

2

∫ x+t

x−t
|f(s, y)| dy

≤ Xt
(9)

Combining (7) and (9), we find

|w(t, x)| ≤
∫ t

0
|z(t− s, s, x)| ds

≤ X
∫ t

0
(t− s) ds

=
1

2
Xt2.

(10)

Combining (3), (6), and (10) yields the result.
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Question 3. Let v and w be, respectively, solutions to{
vtt −∆v = 0, x ∈ Rn, t > 0,

v(0, x) = f1(x), vt(0, x) = g1(x), x ∈ Rn,

and {
wtt −∆w = 0, x ∈ Rn, t > 0,

w(0, x) = f2(x), wt(0, x) = g2(x), x ∈ Rn,

where f1, f2, g1, and g2 are given smooth functions. Suppose that f1(x) = f2(x) for all x ∈ B1(0),
and g1(x) = g2(x) for all x ∈ B1(0). Show that v(t, x) = w(t, x) for all (t, x) ∈ C, where C is the
cone

C =
{

(t, x) ∈ [0,∞)× Rn
∣∣∣ 0 ≤ t ≤ 1, |x| ≤ 1− t

}
.

Hint: Use

E(t) =
1

2

∫
B1−t(0)

[
(∂tu(t, x))2 + c2|∇u(t, x)|2

]
dx,

where ∇ is the gradient in Rn and |∇u(t, x)| is the norm of the vector ∇u(t, x).
Solution. It suffices to show that if u(0, x) = 0 and ut(0, x) = 0, for |x| ≤ 1, then u = 0 on C.
Define for 0 ≤ t ≤ 1,

E(t) =
1

2

∫
B1−t(0)

(
u2
t (t, x) + |∇u(t, x)|2

)
dx.

Differentiating and integrating by parts,

d

dt
E(t) =

∫
B1−t(0)

(
ututt + 〈∇u,∇ut〉

)
dx− 1

2

∫
∂B1−t(0)

(
u2
t + |∇u|2

)
ds

=

∫
B1−t(x0)

ut(utt −∆u) +

∫
∂B1−t(0)

∂u

∂ν
ut ds−

1

2

∫
∂B1−t(0)

(
u2
t + |∇u|2

)
ds

=

∫
∂B1−t(0)

(∂u
∂ν
ut −

1

2
u2
t −

1

2
|∇u|2

)
ds,

where in the last step we used utt −∆u = 0. Since ab ≤ a2

2 + b2

2 (because (a− b)2 ≥ 0),∣∣∣∣∂u∂ν ut
∣∣∣∣ ≤ |ut||∇u| ≤ 1

2
u2
t +

1

2
|∇u|2.

We conclude that d
dtE(t) ≤ 0, hence E(t) ≤ E(0) = 0 for all 0 ≤ t ≤ 1. It follows that ut and ∇u

vanish identically and so does u within C.
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Question 5. Prove the following improved version of the maximum principle. Let Ω ⊂ Rn be a
bounded domain with smooth boundary. If u ∈ C2(Ω) satisfies

∆u ≥ 0 in Ω,

then u attains its maximum on the boundary, i.e.,

max
Ω

u = max
∂Ω

u.

Hint: Assume first that ∆u > 0, and show that this cannot happen if u has a local maximum in Ω.
For the case ∆u ≥ 0, set uε = u+ εex1 , where ε > 0, and conclude that ∆uε > 0. Obtain the result
by taking the limit ε→ 0+.

Formulate, and prove, a similar statement for the minimum of u.
Solution. Suppose first that u satisfies ∆u > 0. Let x0 ∈ Ω be a point where u attains its maximum
(which exists since Ω is compact). If x0 were an interior point, i.e., x0 ∈ Ω, then x0 would in
particular be an interior local maximum, and would satisfy

∆u(x0) ≤ 0,

which is contrary to ∆u > 0. Thus x0 must be on the boundary.
Consider now the original case, ∆u ≥ 0. Then

∆uε = ∆u+ ε∆ex1

= ∆u+ εex1

> ∆u

> 0,

where uε = u+ εex1 , ε > 0, and we used that εex1 > 0 and the assumption ∆u ≥ 0. Thus ∆uε > 0,
and by the above uε cannot attain its maximum in the interior Ω. If u is constant then

max
Ω

u = max
∂Ω

u

obviously holds, so let us assume that u is not constant. In this case, we claim that that u cannot
attain its maximum at an interior point. Indeed, if u had a maximum at x0 ∈ Ω, then, by choosing
ε sufficiently small, uε would also have a maximum at an interior point, which is ruled out by the
above. Thus the maximum of u must be on the boundary.

Changing u by −u, we obtain that if ∆u ≤ 0, then u attains its minimum on the boundary.
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Question 6. Let Ω ⊂ Rn be a bounded domain with smooth boundary. Consider the Dirichlet
problem for the Laplacian {

∆u = f, in Ω,

u = g, on ∂Ω,
(11)

where f : Ω → R, and g : ∂Ω → R are smooth (i.e., C∞) functions. Show that this problem is
well-posed.
Hint: For existence, you can simply quote the results from class. For continuous dependence on the
parameters, use uniqueness to show that one can write u = v + w, where v solves (11) with g = 0,
and w solves (11) with f = 0. Next, define the functions

v+ = (e2αd − eα(x1+d)) max
Ω
|f |,

and

v− = −(e2βd − eβ(x1+d)) max
Ω
|f |.

Show that for suitable choice of the constants α, β, and d, one can apply the result of question 5 to
the functions v+ − v and v− − v to conclude that

|v| ≤ C max
Ω
|f |, (12)

for some constant C depending on α, β, and d. Finally, use (12) to conclude that u depends
continuously on the data of the problem.
Solution. In light of the results developed in class, it suffices to show (12). Let v− and v+ be as
above, where d is any constant satisfying |x1| < d for all x ∈ Ω, and α > 0 and β > 0 are constants
that will be determined below. Notice that with this choice of d, v+ ≥ 0 and v− ≤ 0, for any α, β > 0.
Compute

∆(v+ − v) = ∆
(

(eαd − eα(x1+d)) max
Ω
|f |
)
−∆v

= −max
Ω
|f |∆eα(x1+d) − f

= −α2eα(x1+d) max
Ω
|f | − f.

(13)

Since |x1| < d and α will be chosen positive, we have that

eα(x1+d) ≥ 1.

Therefore, if α is chosen sufficiently large, −α2eα(x1+d) ≤ −1, and (13) implies

∆(v+ − v) ≤ 0.

Therefore, by the previous question, v+ − v attains its minimum on the boundary, and we conclude

v+ − v ≥ min
Ω

(v+ − v)

= min
∂Ω

(v+ − v)

= min
∂Ω

v+

≥ 0,
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where in the next-to-the-last step we used that v vanishes on the boundary, and in the last step we
used that v+ is non-negative. Therefore v ≤ v+, or, explicitly,

v ≤ (e2αd − eα(x1+d)) max
Ω
|f |

≤ e2αd max
Ω
|f |.

This shows that

v ≤ C1 max
Ω
|f |, (14)

where C1 = e2αd.
Next, compute

∆(v− − v) = ∆
(
− (eβd − eβ(x1+d)) max

Ω
|f |
)
−∆v

= max
Ω
|f |∆eβ(x1+d) − f

= β2eβ(x1+d) max
Ω
|f | − f.

(15)

Since |x1| < d and β will be chosen positive, we have that

eβ(x1+d) ≥ 1.

Therefore, if β is chosen sufficiently large, β2eβ(x1+d) ≥ 1, and (15) implies that

∆(v− − v) ≥ 0.

Invoking again the previous question, we have that v− − v attains its maximum on the boundary,
and so

v− − v ≤ max
Ω

(v− − v)

= max ∂Ω(v− − v)

= max
∂Ω

v−

≤ 0,

where in the next-to-the-last step we used that v vanishes on the boundary, and in the last step we
used that v− is non-positive. Therefore, v ≥ v−, or, explicitly,

v ≥ −(e2βd − eβ(x1+d)) max
Ω
|f |

≥ −e2βd max
Ω
|f |.

(16)

This shows that

v ≥ −C2 max
Ω
|f |, (17)

where C2 = e2βd. Setting C = max{C1, C2}, (14) and (17) give

−C max
Ω
|f | ≤ v ≤ C max

Ω
|f |,

which means

|v| ≤ C max
Ω
|f |,

as desired.
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Question 7. Prove the result of the previous question using the Green function.
Solution. As in question 6, the results discussed in class allow us to consider only the case when u
solves {

∆u = f, in Ω,

u = 0, on ∂Ω,

and it is enough to establish the inequality

|u| ≤ C max
Ω
|f |,

for some constant C. Using the representation formula

u(x) = −
∫

Ω
G(x, y)f(y) dy,

for any x ∈ Ω. A boundary integral does not appear in this expression because u vanishes on the
boundary. Notice also that there is a sign difference from the formula derived in class, since in that
case we studied −∆u = f .

From the above, it follows that

|u(x)| =
∣∣∣∣∫

Ω
G(x, y)f(y) dy

∣∣∣∣
≤
∫

Ω
|G(x, y)| |f(y)| dy

≤ max
Ω
|f |
∫

Ω
|G(x, y)| dy.

Recall that G(x, y) = Γ(x− y) + h(y), where Γ(x− y) is the fundamental solution for the Laplacian
and h is a harmonic function in Ω that equals −Γ on ∂Ω. This gives

|u(x)| ≤M max
Ω
|f |
∫

Ω

1

|y − x|n−2
dy +M max

Ω
|f | vol(Ω), (18)

for some constant M , and where vol means volume.
Next, choose some R > 0 such that Ω ⊂ BR(x), and estimate as follows:∫

Ω

1

|y − x|n−2
dy ≤

∫
BR(x)

1

|y − x|n−2
dy

=

∫
BR(0)

1

|y|n−2
dy

=

∫
Sn−1

(∫ R

0

1

rn−2
rn−1 dr

)
dω

=
R2

2

∫
Sn−1

dω

=
vol(Sn−1)R2

2
.

Setting

C = M

(
vol(Ω) +

vol(Sn−1)R2

2

)
,
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(18) produces

|u| ≤ C max
Ω
|f |,

as desired.
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Question 8. Let R2
+ be the upper half plane in R2, i.e.,

R2
+ =

{
(x, y) ∈ R2

∣∣∣ y > 0
}
.

Consider the boundary value problem
∆u = 0 in R2

+,

u = 0 for y = 0
∂u
∂y = 1

n sin(nx) for y = 0,

(19)

where n is a given positive integer. Notice that this is the case where we are prescribing both u and
its normal derivative on the boundary.

(a) Use separation of variables to show that the function

u(x, y) =
1

n2

eny − e−ny

2
sin(nx) (20)

is a solution of (19).
(b) Taking the limit n→∞ in (19) and (20), what can you conclude about the well-posedness of

the boundary value problem (19)?
Solution. Taking the limit in (19) gives the problem

∆u = 0 in R2
+,

u = 0 for y = 0
∂u
∂y = 0 for y = 0,

which has u = 0 as solution. On the other hand, taking the limit of the solutions (20), gives

u→∞
for y > 0. Thus, the limit of solutions to (19) does not converge a solution of the limit of (19).
This shows that solutions do not depend continuously on the initial data, and therefore (19) is not
well-posed.
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Question 9. Using the Green’s function for a ball of radius one,

G(x, y) = Γ(y − x)− Γ
(
|x|(y − x

|x|2
)
)
,

show that if u is a positive function that solves

∆u = 0, in BR(0),

then

Rn−2(R− |x|)
(R+ |x|)n−1

u(0) ≤ u(x) ≤ Rn−2(R+ |x|)
(R− |x|)n−1

u(0).

Solution. Consider first the case R = 1, and let g denote u restricted to ∂B1(0) (it is assumed that
u is defined up to the boundary). The representation formula gives

u(x) = −
∫
∂B1(0)

g(y)∂νG(x, y) ds(y). (21)

Since

∂Γ(y − x)

∂yi
=

1

nα(n)

xi − yi
|x− y|n

,

and

∂Γ
(
|x|(y − x

|x|2 )
)

∂yi
= − 1

nα(n)

yi|x|2 − xi
(|x||y − x

|x|2 |)n

= − 1

nα(n)

yi|x|2 − xi
|x− y|n

,

for y ∈ ∂B1(0). Since νi = yi on ∂B1(0),

∂νG(x, y) =
n∑
i=1

yi
∂G(y, x)

∂yi

= − 1

nα(n)

1

|x− y|n
n∑
i=1

yi
(
(yi − xi)− yi|x|2 + xi

)
= − 1

nα(n)

1− |x|2

|x− y|n
.

(22)

Using (22) into (21) gives

u(x) =
1− |x|2

nα(n)

∫
∂B1(0)

g(y)

|x− y|n
ds(y). (23)

Consider now the case of arbitrary R > 0. If u solves ∆u = 0 in BR(0), then the function ũ(x) =
u(Rx) solves ∆ũ = 0 in B1(0). Changing variables in (23) gives

u(x) =
R2 − |x|2

nα(n)R

∫
∂BR(0)

g(y)

|x− y|n
ds(y), (24)
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for x ∈ BR(0). We shall now use (24) to solve the problem. For y ∈ ∂BR(0), it holds that
|x− y| ≤ |x|+R. Thus (24) and the fact that u is positive imply

u(x) =
R2 − |x|2

nα(n)R

∫
∂BR(0)

g(y)

|x− y|n
ds(y)

≥ R2 − |x|2

nα(n)R

∫
∂BR(0)

g(y)

(|x|+R)n
ds(y)

=
R2 − |x|2

(|x|+R)n
1

nα(n)R

∫
∂BR(0)

g(y) ds(y)

=
R− |x|

(|x|+R)n−1

1

nα(n)R

∫
∂BR(0)

g(y) ds(y)

=
R2 − |x|2

(|x|+R)n
Rn−2 1

nα(n)Rn−1

∫
∂BR(0)

g(y) ds(y)

=
Rn−2(R2 − |x|2)

(|x|+R)n
u(0),

where in the last step we used the mean value formula:

u(0) =
1

nα(n)Rn−1

∫
∂BR(0)

g(y) ds(y).

The other inequality is similarly proven using that |x− y| ≥ R− |x| for y ∈ ∂BR(0).



MATH 234 - INTRO TO PDES 13

Question 10. Prove that the Green function is symmetric, i.e.,

G(x, y) = G(y, x),

for all x, y ∈ Ω, where Ω is the domain of definition of the problem.
Hint: Define v(z) = G(x, z), w(z) = G(y, z), apply Green’s identity on the domain Uε = Ω\(Bε(x)∪
Bε(y)), and take the limit ε→ 0+.
Solution. Let v and w be as above. Then ∆v = 0 for z 6= x, ∆w = 0 for z 6= y, and v = 0 = w on
∂Ω. Applying Green’s identity on Uε gives∫

Uε

(v∆w − w∆v) =

∫
∂Uε

(v∂νw − w∂νv)

=

∫
∂Ω

(v∂νw − w∂νv)

+

∫
∂Bε(x)

(v∂νinw − w∂νinv) +

∫
∂Bε(y)

(v∂νinw − w∂νinv) ,

where νin denotes the inner normal. Since ∆v = 0 for z 6= x, ∆w = 0 for z 6= y, and v = 0 = w on
∂Ω, the above reduces to∫

∂Bε(x)
(v∂νinw − w∂νinv) +

∫
∂Bε(y)

(v∂νinw − w∂νinv) = 0. (25)

Since w is a C2 function outside Bε(y),

|∂νinw| ≤ max
∂Bε(x)

|∇w| ≤ C,

for some constant C. Thus, ∣∣∣∣∣
∫
∂Bε(x)

v∂νinw

∣∣∣∣∣ ≤ C
∫
∂Bε(x)

|v|

≤ C max
∂Bε(x)

|v|
∫
∂Bε(x)

ds

≤ C ′ε2−nεn−1

= C ′ε,

for some constant C ′. Similarly, ∣∣∣∣∣
∫
∂Bε(y)

w∂νinv

∣∣∣∣∣ ≤ C ′ε.
Thus, taking the limit ε→ 0+ in (25),

lim
ε→0+

∫
∂Bε(x)

w∂νinv = lim
ε→0+

∫
∂Bε(y)

v∂νinw. (26)

Recall that

v(z) = G(x, z) = Γ(x− z) + hx(z),

where hx is a harmonic function in Ω equal to −Γ(x − z) on ∂Ω. Since hx is a C2 function away
from ∂Ω, arguing as above yields

lim
ε→0+

∫
∂Bε(x)

w∂νinhx = 0,
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and the same argument shows that

lim
ε→0+

∫
∂Bε(y)

v∂νinhz = 0.

(26) now reads

lim
ε→0+

∫
∂Bε(x)

w∂νinΓ(x− z) = lim
ε→0+

∫
∂Bε(y)

v∂νinΓ(y − z).

The above limits were computed in class (see the construction of solutions for the Poisson equation),

lim
ε→0+

∫
∂Bε(x)

w∂νinΓ(x− z) = w(x),

and

lim
ε→0+

∫
∂Bε(y)

v∂νinΓ(y − z) = v(y),

which gives the result.
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Question 11. Consider the time independent Schrödinger equation studied in class:

− ~2

2µ
∆ψ + V ψ = Eψ.

Show that, under suitable decay conditions on ψ for |x| → ∞, the energy E is always a real number.
Hint: Similar to when we showed that E is real in the case of the radial equation.
Solution. Multiply the equation by ψ∗, integrate over BR(0), R > 0, and integrate by parts the
Laplacian to obtain

~2

2µ

∫
BR(0)

|∇ψ|2 − ~2

2µ

∫
∂BR(0)

ψ∗∂νψ +

∫
BR(0)

V |ψ|2 = E

∫
BR(0)

|ψ|2.

We want to take the limit R→∞ and guarantee that the above integrals are finite in the limit. We
also want the boundary term to vanish since it is the only integral that is not necessarily real in the
above equality.

Recalling that in polar coordinates in Rn∫
BR(0)

(
· · ·
)

=

∫
Sn−1

(∫ R

0

(
· · ·
)
rn−1 dr

)
dω,

and ∫
∂BR(0)

(
· · ·
)

=

∫
Sn−1

(
· · ·
)
Rn−1 dω,

we obtain the desired results if, for instance,

|ψ| ≤ C

|x|
n
2

+1
,

and

|∇ψ| ≤ C

|x|
n
2

+2
,

provided that V is also a function that decays for large |x|.
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Question 12. Let Ω ⊆ Rn.
(a) Show that any integrable function u defines a distribution via

〈u, f〉 =

∫
Ω
uf.

(b) Suppose now that u ∈ C∞c (Ω). Show that the weak derivative of u, when u is thought of as a
distribution (see part (a)), agrees with the usual derivative of u.
Solution. If u is integrable in Ω, i.e.,

∫
Ω |u| <∞, then it defines a distribution by

〈u, f〉 =

∫
Ω
u(x)f(x) dx, (27)

f ∈ C∞c (Ω). To see this, first notice that if we let K ⊂ Ω be a compact set such that supp(f) ⊂ K,
then ∣∣∣∣∫

Ω
u(x)f(x) dx,

∣∣∣∣ ≤M ∫
K
|u(x)| dx <∞,

since u is integrable, and where we used that |f | ≤ M for some M . Thus, 〈u, f〉 is well-defined.
Linearity follows from linearity of the integral. Finally, if fj → f in C∞c (Ω) and we choose a compact
set K ⊂ Ω such that supp(fj) ⊂ K for all j (which exists by the definition of convergence in C∞c (Ω)),
then

lim
j→∞
〈u, fj〉 = lim

j→∞

∫
K
u(x)fj(x) dx =

∫
K
u(x) lim

j→∞
fj(x) dx

=

∫
K
u(x)f(x) dx =

∫
Ω
u(x)f(x) dx = 〈u, fj〉.

For part (b), let u ∈ C∞c (Ω). Then its weak derivative is given by

〈Dαu, f〉 = (−1)α〈u,Dαf〉.
In view of (27), we can rewrite the right-hand side of this expression as

〈Dαu, f〉 = (−1)α
∫

Ω
u(x)Dαf(x) dx, (28)

On the other hand, denote by ∂αu the ordinary derivative of u, i.e.,

∂αu =
∂|α|u

∂xα1
1 · · · ∂x

αn
n
.

As ∂αu ∈ C∞c (Ω), it also defines a distribution via

〈∂αu, f〉 =

∫
Ω
∂αu(x)f(x) dx.

Integrating this expression by parts |α| times gives

〈∂αu, f〉 = (−1)|α|
∫

Ω
u(x)Dαf(x) dx, (29)

where the integration by parts does not yield any integral on the boundary because f is a test
function. Subtracting (28) and (29),

〈Dαu− ∂αu, f〉 = 0.

Since f ∈ C∞c (Ω) is arbitrary, this gives Dαu = ∂αu.
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Question 13. Consider the function u : Ω→ R, where Ω = (−3, 3) ⊂ R, given by

u(x) =


0, −3 < x ≤ −2,

2x+ 4, −2 < x ≤ 0,

−x+ 1, 0 < x ≤ 1,

0, 1 < x < 3.

Show that u defines a distribution, and that its weak derivative is

u′ = 2χ[−2,0] − χ[0,1] − 3δ0,

where δ0 is the Dirac-delta distribution centered at zero, and χ[a,b] is given by

χ[a,b](x) =

{
1, x ∈ [a, b],

0, x /∈ [a, b].

Solution. u is integrable, thus it defines a distribution. Its derivative is given by

〈u′, f〉 = −〈u, f ′〉, (30)

for all f ∈ C∞c (Ω). But

〈u, f ′〉 =

∫
Ω
uf ′ =

∫ 0

−2
(2x+ 4)f ′(x) dx+

∫ 1

0
(−x+ 1)f ′(x) dx

= −
∫ 0

−2
2f(x) dx+ (2x+ 4)f(x)

∣∣∣0
−2
−
∫ 1

0
(−1)f(x) dx+ (−x+ 1)f(x)

∣∣∣1
0

= −2

∫ 0

−2
f +

∫ 1

0
f + 3f(0)

= −
∫

Ω
(2χ[−2,0] − χ[0,1])f + 3f(0),

Comparing with (30) we conclude that

u′ = 2χ[−2,0] − χ[0,1] − 3δ0,

where δ0 is the Dirac-delta distribution centered at zero.
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Question 14.
(a) Compute the (weak) derivative of the Dirac-delta function.
(b) Show that any distribution has infinitely many weak derivatives.

Solution. From the definition of weak derivative,

〈Dαδx, f〉 = (−1)|α|〈δx, Dαf〉

= (−1)|α|Dαf(x).

Thus, Dαδx is the distribution that associates to each test function f , the α-derivative of f evaluated
at x (which is a real number).

For part (b), notice that

〈Dαϕ, f〉 = (−1)|α|〈ϕ,Dαf〉
is well-defined for arbitrary α since Dαf ∈ C∞c (Ω) if f does.
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Question 15. For a > 0, define

φa(t) =

{
1
a , |t| ≤

a
2 ,

0, |t| > a
2 .

(a) Show that

lim
a→0+

∫ ∞
−∞

f(t)φa(t) dt = δ(f),

for all f ∈ C∞c (R).
(b) Compute

lim
a→0+

φa(t).

(c) Show that

lim
a→0+

∫ ∞
−∞

f(t)φa(t) dt 6=
∫ ∞
−∞

f(t) lim
a→0+

φa(t) dt.

Solution. Notice that ∫ ∞
−∞

f(t)φa(t) dt =
1

a

∫ a
2

−a
2

f(t) dt,

and that

1

a
min

[−a
2
,a
2

]
f(t) a ≤

∫ a
2

−a
2

f(t)φa(t) dt ≤
1

a
max

[−a
2
,a
2

]
f(t) a.

Combining these last two expressions produces

min
[−a

2
,a
2

]
f(t) ≤

∫ ∞
−∞

f(t)φa(t) dt ≤ max
[−a

2
,a
2

]
f(t).

Since f is continuous, in the limit a→ 0+,

lim
a→0+

min
[−a

2
,a
2

]
f(t) = f(0),

and

lim
a→0+

max
[−a

2
,a
2

]
f(t) = f(0),

and therefore the squeeze theorem gives

lim
a→0+

∫ a
2

−a
2

f(t)φa(t) dt = f(0) = δ(f).

For part (b), one immediately finds

lim
a→0+

φa(t) =

{
0, t 6= 0,

∞, t = 0.
(31)

For part (c), notice that since

lim
a→0+

φa(t)
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is not defined at zero, the integral ∫ ∞
−∞

f(t) lim
a→0+

φa(t) dt

has to be understood as an improper integral, i.e.,∫ ∞
−∞

f(t) lim
a→0+

φa(t) dt = lim
T→0−

∫ T

−∞
f(t) lim

a→0+
φa(t) dt

+ lim
R→0+

∫ ∞
R

f(t) lim
a→0+

φa(t) dt.

But in light of (31), ∫ T

−∞
f(t) lim

a→0+
φa(t) dt = 0, T < 0,

and ∫ ∞
R

f(t) lim
a→0+

φa(t) dt = 0, R > 0,

which gives

f(0) = lim
a→0+

∫ ∞
−∞

f(t)φa(t) dt 6=
∫ ∞
−∞

f(t) lim
a→0+

φa(t) dt = 0,

since f is an arbitrary test function.
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Question 16. Define ϕ : C∞c (Ω)→ R by

〈ϕ, f〉 =

{
1, if f(0) > 0,

0, if f(0) ≤ 0.

Show that ϕ is not continuous.
Hint: Consider a sequence in {fj}∞j=1 ⊂ C∞c (Ω) such that fj(0) > 0 for all j and fj(0)→ 0.
Solution. Consider the function

f(x) =

{
exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1.

Thus, f(x) > 0 for |x| < 1 and f(x) = 0 otherwise. As discussed in class, f ∈ C∞c (Ω). Let

zj = (1− 1

j
, 0, . . . , 0), j = 1, 2, . . .

and set

fj(x) = f(x− zj).
It follows that fj(x) > 0 on B1(x − zj) and fj(x) = 0 otherwise. Because 0 ∈ B1(x − zj) for every
j, we have 〈ϕ, fj〉 = 1. On the other hand, fj → g in C∞c (Ω) as j → ∞, where g is given by
g(x) = f(x − e1), e1 = (1, 0, . . . , 0). But g(0) = 0, thus 〈ϕ, g〉 = 0, which shows that ϕ is not
continuous.
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Question 17.
(a) Solve

{
utt − uxx = 0, x ∈ R, t > 0,

u(0, x) = 0, ut(0, x) = g(x), x ∈ R,

where

g(x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.

(b) Find u(1
2 , x) and u(t, 1

2).

(c) Let φ(x) = u(1
2 , x) and ψ(t) = u(t, 1

2). Show that φ and ψ are distributions, and compute their
second weak derivative.

(d) Use (c) to give an interpretation of the (non-classical) solution that you found in (a).
Solution. Using D’Alembert’s formula, we find

u(t, x) =



0, x+ t ≤ 0,
x+t

2 , x− t ≤ 0, 0 ≤ x+ t ≤ 1,
1
2 , x− t ≤ 0, 1 ≤ x+ t,

t, 0 ≤ x− t ≤ 1, x+ t ≤ 1,
1−x+t

2 , 0 ≤ x− t ≤ 1, 1 ≤ x+ t,

0, x− t ≥ 1.

From the above,

u(
1

2
, x) =


0, x ≤ −1

2 ,
x
2 + 1

4 , −
1
2 ≤ x ≤

1
2

3
4 −

x
2 ,

1
2 ≤ x ≤

3
2

0, 3
2 ≤ x,

and

u(t,
1

2
) =


0, t ≤ 0,

t, 0 ≤ t ≤ 1
2

1
2 ,

1
2 ≤ t,

Next, we compute the weak derivatives.

〈ϕ′′, f〉 = 〈ϕ, f ′′〉,
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for all f ∈ C∞c (R). The right-hand side of this expression is given by

〈ϕ, f ′′〉 =

∫ ∞
−∞

ϕf ′′

=

∫ 1
2

− 1
2

(
x

2
+

1

4

)
f ′′(x) dx+

∫ 3
2

1
2

(
3

4
− x

2

)
f ′′(x) dx

= −
∫ 1

2

− 1
2

1

2
f ′ +

[(x
2

+
1

4

)
f ′
] 1

2

− 1
2

−
∫ 3

2

1
2

(
−1

2

)
f ′ +

[(3

4
− x

2

)
f ′
] 3

2

1
2

= −
∫ 1

2

− 1
2

1

2
f ′ +

2

4
f ′(

1

2
) +

1

2

∫ 3
2

1
2

f ′ − 2

4
f ′(

1

2
)

= −1

2
f
∣∣∣ 12
− 1

2

+
1

2
f
∣∣∣ 32
1
2

= −f(
1

2
) +

1

2

(
f(

3

2
) + f(−1

2
)

)
.

A similar argument yields

〈ψ′′, f〉 = −f(
1

2
) + f(0).

We interpret these calculations as follows. The solution u(t, x) found above is not classical, thus we
cannot plug it in directly in the wave equation and evaluate it at the points where derivatives are
not defined, such as (1

2 ,
1
2). If we interpret the derivatives as weak derivatives though, then we can

imagine smearing out the solution near (1
2 ,

1
2), i.e., we can choose test functions that are supported

in a very small neighborhood of (1
2 ,

1
2). In this situation, we can heuristically think of the point-wise

expressions

utt(
1

2
,
1

2
) = 〈ψ′′, f〉 = −f(

1

2
) = −〈δ 1

2
, f〉,

and

uxx(
1

2
,
1

2
) = 〈ϕ′′, f〉 = −f(

1

2
) = −〈δ 1

2
, f〉,

so that utt(
1
2 ,

1
2)“ = ” − δ 1

2
and uxx(1

2 ,
1
2)“ = ” − δ 1

2
, giving a “solution” satisfying utt(

1
2 ,

1
2) −

uxx(1
2 ,

1
2) = 0.


