VANDERBILT UNIVERSITY
MATH 234 — INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
PRACTICE FINAL.

Question 1. Solve the following initial-boundary value problem
Ugr = 0, § > —r,—oo < r < 00,
u(—r,r)=F(r), —oo<r<o0,
us(—r,r) = G(r), —oo <r < oo,

where u = u(s,r) is the unknown, and F' and G are given C* functions.
Hint: Change variablest=s+r, x =s—r.
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Question 2. Let u(t,z) be a solution to the following initial-value problem:

Ut — Uze = f (L, ), —co<x <00, t>0,

u(0,z) = g(x), ur(0,z) = h(xz), —oo < x < 00,
where f, g, and h are C'*° functions. Assume that there exist numbers X, Y, and Z, such that

[f(t,z)] < X, |g(z)| <Y, [h(x)] < Z,
for all £ > 0, x € R. Show that for any ¢ > 0, and any = € R, it holds that
1
lu(t, )| <Y +tZ + 5Xt2.

Hint: D’Alembert and Duhamel.
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Question 3. Let v and w be, respectively, solutions to
vy — Av =0, rzeR™ t>0,
{v<o,m> — (@), v(0.2) = gi(w), @€ RY,
and
wy — Aw = 0, zeR™ t>0,
{w(O,x) = fa(z), w(0,2) = go(x), z€R",

where f1, fa, g1, and g2 are given smooth functions. Suppose that fi(z) = fo(x) for all x € B;(0),
and gi(x) = go(x) for all z € B1(0). Show that v(t,xz) = w(t,x) for all (¢,x2) € C, where C is the
cone

C= {(t,:c) € [0, 00) xR”‘Oﬁtﬁ 1, |z] < 1—t}.
Hint: Use

B(t) = /B i (@t 2))? + | Vult, )] d,

where V is the gradient in R™ and |Vu(t, z)| is the norm of the vector Vu(t, x).
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Question 5. Prove the following improved version of the maximum principle. Let € C R" be a
bounded domain with smooth boundary. If u € C?(Q) satisfies

Au>0in €,
then u attains its maximum on the boundary, i.e.,

max u = max u.
o) e}
Hint: Assume first that Au > 0, and show that this cannot happen if v has a local maximum in 2.
For the case Au > 0, set u. = u + €e®, where ¢ > 0, and conclude that Au. > 0. Obtain the result
by taking the limit € — 0.
Formulate, and prove, a similar statement for the minimum of .
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Question 6. Let 2 C R" be a bounded domain with smooth boundary. Consider the Dirichlet
problem for the Laplacian

(1)

Au=f, in Q,
u=gq, on 012,

where f : @ — R, and g : 9Q — R are smooth (i.e., C*) functions. Show that this problem is
well-posed.

Hint: For existence, you can simply quote the results from class. For continuous dependence on the
parameters, use uniqueness to show that one can write u = v + w, where v solves (1) with g = 0,
and w solves (1) with f = 0. Next, define the functions

a(z1 +d))

(eQad —e

max | f|,
Q

and
v = — (2P — PEHD)) max | f].
Q

Show that for suitable choice of the constants «, 8, and d, one can apply the result of question 5 to
the functions vy — v and v_ — v to conclude that

o] < CmgXIfl, (2)

for some constant C' depending on «, (3, and d. Finally, use (2) to conclude that v depends continu-
ously on the data of the problem.
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Question 7. Prove the result of the previous question using the Green function.
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Question 8. Let Ri be the upper half plane in R?, i.e.,
R%r:{(x,y) ERQ‘y>O}.

Consider the boundary value problem

Au =0 in R?,
u=70 fory=10 (3)
% = Lsin(nz) for y =0,

where n is a given positive integer. Notice that this is the case where we are prescribing both v and
its normal derivative on the boundary.
(a) Use separation of variables to show that the function
1 e™—e™™

u(z,y) = R sin(nx) (4)

is a solution of (3).
(b) Taking the limit n — oo in (3) and (4), what can you conclude about the well-posedness of
the boundary value problem (3)?
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Question 9. Using the Green’s function for a ball of radius one,
x
G(a,y) =T(y —x) = T(|z[(y - W))’
show that if u is a positive function that solves
Au =0, in Br(0),
then
R" (R — |z|)
(R + [a])"—

R"2(R + |z])

u(0) < u(x) < (R — m)n—l

u(0).
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Question 10. Prove that the Green function is symmetric, i.e.,
G(z,y) = Gy, ),
for all x,y € ), where €2 is the domain of definition of the problem.
Hint: Define v(z) = G(z, 2), w(z) = G(y, 2), apply Green’s identity on the domain U, = Q\(B.(z) U
B:(y)), and take the limit e — 0.
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Question 11. Consider the time independent Schrodinger equation studied in class:
h2
—— Ay + Vi = E.
21

Show that, under suitable decay conditions on 9 for |x| — oo, the energy E is always a real number.
Hint: Similar to when we showed that FE is real in the case of the radial equation.



MATH 234 - INTRO TO PDES 11

Question 12. Let Q C R™.
(a) Show that any integrable function u defines a distribution via

) = [ .

(b) Suppose now that u € C2°(§2). Show that the weak derivative of u, when w is thought of as a
distribution (see part (a)), agrees with the usual derivative of w.
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Question 13. Consider the function u : Q — R, where Q = (-3, 3) C R, given by
0, —3I<zr< -2,

20 +4, —-2<x<L0,

—rz4+1, 0<z<1,

0, 1<z<3.

u(z) =

Show that u defines a distribution, and that its weak derivative is

u' = 2X[_2,0] — X[0,1] — 3d0,
where Jg is the Dirac-delta distribution centered at zero, and x4y is given by

1, x € la,b],
X[a,b](l’) - {O, T ; {a, b%.
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Question 14.
(a) Compute the (weak) derivative of the Dirac-delta function.
(b) Show that any distribution has infinitely many weak derivatives.

13
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Question 15. For a > 0, define

(a) Show that
lim / T F(0)alt) dt = 5(7).

a—07t

for all f € C(R).
(b) Compute

(c) Show that
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Question 16. Define ¢ : C°(Q2) — R by

1. i £(0) >0,
<¢’f>_{o, if £(0) < 0.

Show that ¢ is not continuous.

Hint: Consider a sequence in {f;}32; C C2°(£2) such that f;(0) > 0 for all j and f;(0) — 0.

15
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Question 17.
(a) Solve
Upt — Ugy = 0, zeR, t>0,
w(0,2) =0, u(0,z) = g(z), x€R,

where

0, otherwise.

1, 0<z <1,
g(l‘)Z{

(b) Find u(3,z) and u(t, 3).

(c) Let ¢(x) = u(3, ) and ¥(t) = u(t, 3). Show that ¢ and v are distributions, and compute their
second weak derivative.

(d) Use (c) to give an interpretation of the (non-classical) solution that you found in (a).



