
VANDERBILT UNIVERSITY, MATH 234 SPRING 14: THE POISSON

EQUATION IN Rn.

This is a mix of class notes and homework assignment, whose goal is to solve

−∆u = f (1)

in Rn.
From now on, it is assumed that n ≥ 3. Let f ∈ C2(Rn), and assume that f has compact support.

Recall that in class we defined Φ : Rn\{0} → R by

Φ(x) =
1

n(n− 2)αn

1

|x|n−2
, (2)

where αn is the volume of the unit ball in Rn.
Problem 1. Compute

∂i|x|,

and use this to show that there exists a constant C > 0 such that

|∂iΦ| ≤
C

|x|n−1
, |∂ijΦ| ≤

C

|x|n
, i, j = 1, . . . , n, x 6= 0.

Solution. Since

|x| =
√
x21 + x22 + · · ·+ x2n,

It follows at once that

∂i|x| =
xi√

x21 + x22 + · · ·+ x2n
=
xi
|x|
.

Now use the chain rule to compute

∂i|x|2−n = (2− n)|x|1−n xi
|x|
.

Noticing that ∣∣∣∣ xi|x|
∣∣∣∣ ≤ 1,

one obtains ∣∣∣∂i|x|2−n|∣∣∣ ≤ n− 2

|x|1−n
,

1
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from which the first desired inequality follows. Next, use the chain rule again to compute

∂ji|x|2−n = ∂j

(
(2− n)|x|1−n xi

|x|

)
= (2− n)∂j

(
xi
|x|n

)
= (2− n)

|x|nδij − n|x|n−1 xixj|x|
|x|2n

=
2− n
|x|n

(
δij −

nxixj
|x|2

)
,

where we used that

∂jxi = δij =

{
0, i 6= j,

1, i = j.

The second desired inequality now follows from noticing that∣∣∣∣δij − nxixj
|x|2

∣∣∣∣ ≤ 1 + n,

since ∣∣∣∣xixj|x|2
∣∣∣∣ ≤ 1.

Define u : Rn → R by

u(x) =

∫
Rn

Φ(x− y)f(y) dy.

Recall that this can also be written as

u(x) =

∫
Rn

Φ(y)f(x− y) dy. (3)

In class, we showed that u is well-defined, and that the second derivatives of u exist and satisfy

uxixj (x) =

∫
Rn

Φ(y)fxixj (x− y) dy.

Problem 2. Show that uxixj is continuous. Recalling the definition of continuity, you have to show
that, given x0 ∈ Rn and ε > 0, there exists a δ > 0, such that if |x − x0| < δ, then |uxixj (x) −
uxixj (x0)| < ε. Do this as follows. Fix ε > 0. Write

|uxixj (x)− uxixj (x0)| =
∣∣∣ ∫

Rn

Φ(y)fxixj (x− y) dy −
∫
Rn

Φ(y)fxixj (x0 − y) dy
∣∣∣

=
∣∣∣ ∫

Rn

Φ(y)(fxixj (x− y)− fxixj (x0 − y)) dy
∣∣∣

Use the continuity of fxixj , and the fact that f has compact support (i.e., that supp(f) ⊂ BR(0) for
some R > 0), to show that given ε′ > 0, we can choose δ > 0 so that

|uxixj (x)− uxixj (x0)| ≤
∫
Rn

Φ(y)|fxixj (x− y)− fxixj (x0 − y)| dy

≤ ε′
∫
BR(0)

Φ(y) dy,
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provided that |x− x0| < δ. Next, use the expression (2), and integration in polar coordinates (in n
dimensions), to show that ε′ can be chosen so that

ε′
∫
BR(0)

Φ(y) dy,< ε,

as desired.
Solution. By continuity, given ε′, there exists a δ > 0 such that

|fxixj (x− y)− fxixj (x0 − y)| < ε′,

provided that

|x− y − (x0 − y)| = |x− x0| < δ.

δ may in principle depend on y, but since the support of f (and hence of fxixj ) is compact, δ can be
chosen uniformly. Since ε′ can be chosen as small as we want, we set

ε′ =

(∫
BR(0)

Φ(y) dy

)−1
ε.

We will now show that (1) holds. The argument here will be slightly simpler than what we did in
class, although conceptually it is the same.

From (3), compute

∆u(x) =

∫
Rn

Φ(y)∆xf(x− y) dy.

Fix ε > 0, and write

∆u(x) =

∫
Bε(0)

Φ(y)∆xf(x− y) dy +

∫
Rn\Bε(0)

Φ(y)∆xf(x− y) dy. (4)

Since ∆xf is a continuous function and f has compact support, it follows that there exists a constant
M > 0 such that

|∆f(x)| ≤M for all x ∈ Rn.

Thus ∣∣∣ ∫
Bε(0)

Φ(y)∆xf(x− y) dy
∣∣∣ ≤M ∫

Bε(0)
Φ(y) dy.

Problem 3. Using polar coordinates, as done in class, estimate the integral on the right-hand side
of the previous expression and show that

lim
ε→0

∫
Bε(0)

Φ(y)∆xf(x− y) dy = 0.

Solution. It follows from

0 ≤
∫
Bε(0)

Φ(y) dy =
1

n(n− 2)αn

∫ ε

0

∫
Sn−1

1

rn−2
rn−1 drdω ≤ Cε2.

Problem 4. As done in class, use the chain rule to show that∫
Rn\Bε(0)

Φ(y)∆xf(x− y) dy =

∫
Rn\Bε(0)

Φ(y)∆yf(x− y) dy.
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Solution. By the chain rule,

∂

∂yi
(f(x− y)) =

n∑
j=1

∂jf(x− y)
∂(xj − yj)

∂yi
= −∂if(x− y),

so that

∂2

∂y2i
(f(x− y)) = ∂iif(x− y).

Thus (4) becomes

∆u(x) = I + II,

where

I =

∫
Bε(0)

Φ(y)∆xf(x− y) dy.

and

II =

∫
Rn\Bε(0)

Φ(y)∆yf(x− y) dy.

Integrating by parts, II becomes∫
Rn\Bε(0)

Φ(y)∆yf(x− y) dy = −
∫
Rn\Bε(0)

〈∇Φ(y),∇yf(x− y)〉 dy

+

∫
∂(Rn\Bε(0))

Φ(y)∂νf(x− y)ds(y).

Problem 5. Arguing similarly to problem 3, show that

lim
ε→0

∫
∂(Rn\Bε(0))

Φ(y)∂νf(x− y)ds(y) = 0.

Solution. Using continuity of the first derivatives of f and the fact that it has compact support, we
can find M > 0 such that

|∇f | ≤M.

In particular,

|∂νf | ≤M.

Thus

0 ≤

∣∣∣∣∣
∫
∂(Rn\Bε(0))

Φ(y)∂νf(x− y)ds(y)

∣∣∣∣∣ ≤M
∫
∂Bε(0)

Φ(y) ds(y)

=
M

n(n− 2)αn

∫
Sn−1

1

εn−2
εn−1 dω ≤ Cε,

which gives the result.
Integrating by parts again, II can still be written as∫

Rn\Bε(0)
Φ(y)∆yf(x− y) dy =

∫
Rn\Bε(0)

∆Φ(y)f(x− y) dy

−
∫
∂(Rn\Bε(0))

∂νΦ(y)f(x− y)ds(y),+III

(5)



MATH 234 SPRING 14 5

where

III =

∫
∂(Rn\Bε(0))

Φ(y)∂νf(x− y)ds(y).

Since Φ satisfies ∆Φ = 0 in Rn\{0}, the first integral on the right-hand side of (5) vanishes. Com-
bining the above calculations then gives

∆u(x) = I −
∫
∂(Rn\Bε(0))

∂νΦ(y)f(x− y)ds(y) + III. (6)

Using (2) and problem 1, we can compute

∂iΦ(y) = − 1

nαn

yi
|y|n

= − 1

nαn|y|n−1
yi
|y|
.

On ∂(Rn\Bε(0)), we have |y| = ε and yi
|y| = −νi (recall that the negative sign appears because ν

is the outer normal to ∂(Rn\Bε(0)), which is opposite to the normal to Bε(0)). Thus, the above
becomes

∂iΦ(y) =
1

nαnεn−1
νi,

and then

∂νΦ(y) =
n∑
i=1

∂iΦ(y)νi

=

n∑
i=1

1

nαnεn−1
ν2i

=
1

nαnεn−1

n∑
i=1

ν2i

=
1

nαnεn−1
|ν|2

=
1

nαnεn−1
,

since |ν| = 1. Using this into (6) gives

∆u(x) = I − 1

nαnεn−1

∫
∂(Rn\Bε(0))

f(x− y)ds(y) + III.

Taking the limit ε→ 0, using problems 3 and 5, and noticing that ∆u(x) does not depend on ε, we
obtain

∆u(x) = − lim
ε→0

1

nαnεn−1

∫
∂(Rn\Bε(0))

f(x− y)ds(y).

Notice that, as sets,

∂(Rn\Bε(0)) = ∂Bε(0),

thus

∆u(x) = − lim
ε→0

1

nαnεn−1

∫
∂Bε(0)

f(x− y)ds(y).
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Problem 6. Show that, upon changing variables, this last expression becomes

∆u(x) = − lim
ε→0

1

nαnεn−1

∫
∂Bε(x)

f(y).

Solution. Set z = x− y and notice that the Jacobian of this change of variables is equal to one.
Notice that nαnε

n−1 is the volume of ∂Bε(x),

∆u(x) = − lim
ε→0

1

vol(∂Bε(x))

∫
∂Bε(x)

f(y).

The right-hand side is the average of f over ∂Bε(x). But if we average f over ever smaller concentric
spheres, the value of the average approaches the value of f at the center. Hence,

lim
ε→0

1

vol(∂Bε(x))

∫
∂Bε(x)

f(y) = f(x),

finishing the proof.
Problem 7. Solve Poisson’s equation, as above, in the case n = 2. Hint: chapter 8 of the textbook.
Solution. This is done in chapter 8 of the textbook, see corollary 8.2.
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