VANDERBILT UNIVERSITY, MATH 234 SPRING 14: THE POISSON
EQUATION IN R".

This is a mix of class notes and homework assignment, whose goal is to solve
—Au=f (1)

in R™.
From now on, it is assumed that n > 3. Let f € C?(R"), and assume that f has compact support.
Recall that in class we defined ® : R"\{0} — R by

1 1

() = n(n — 2)ay, |z|"=2’

(2)

where «,, is the volume of the unit ball in R™.
Problem 1. Compute

al‘x’a

and use this to show that there exists a constant C > 0 such that

C c .
|az(1)’ < Wa |8’LJ<I>| < W? 2,7 :1’_“’”7;1;7&0.

Solution. Since

2l = \fa? +af + -+ a2,

It follows at once that
T o
Vat+a3+-+a2  lxl

Oilx| =

Now use the chain rule to compute

oilz>m = (2 - n>|x11*"|%.

Noticing that

Sl
|z
one obtains
_ n—2
Oilal* ™| < P
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from which the first desired inequality follows. Next, use the chain rule again to compute

—-n —n Li
OyleP™ = 8, ((2—n>|xrl )

z|

o )\wln%—n!fﬂln
=(2-n

|x‘2n

—1ZiTy5
||

where we used that

0, ©+#7,

The second desired inequality now follows from noticing that

nTiT;
ij — ]2 <1+n,
since
l’il'j
<1.
|2 |~

Define u : R™ — R by
u(w) = [ 0w~ 9)f(w) dy
Recall that this can also be written as
u(w) = | @9)f(z - ) dy Q
In class, we showed that u is well-defined, and that the second derivatives of u exist and satisfy
Unya, (7) = / () faia (z — y) dy.

Problem 2. Show that u,,,; is continuous. Recalling the definition of continuity, you have to show
that, given 2o € R" and € > 0, there exists a § > 0, such that if [z — x| < J, then |ug.,(v) —
Ugz;(20)| < €. Do this as follows. Fix £ > 0. Write

&) = s, 20)| = | [ @) o = 0)ty = [ @), 20 — ) ]
| [ 0 iy (0= ) = S, 0~ ) ]

Use the continuity of fi,.,, and the fact that f has compact support (i.e., that supp(f) C Bg(0) for
some R > 0), to show that given ¢’ > 0, we can choose § > 0 so that

’umimj (1‘) = Ugja; (x())’ < /]R” (I)(y)‘fzizj (x - y) - fﬁfilj (1‘0 - y)’ dy

<. / B(y) dy,
Bgr(0)
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provided that |z — 29| < §. Next, use the expression (2), and integration in polar coordinates (in n
dimensions), to show that &’ can be chosen so that

6’/ P(y) dy,< e,
Br(0)
as desired.

Solution. By continuity, given &', there exists a § > 0 such that
‘fmzz](x —y) = f-’Ez’ij (zo —y)l <€,
provided that
[z —y = (z0o —y)| = [z — zo| <.

d may in principle depend on y, but since the support of f (and hence of f;,.,) is compact, § can be
chosen uniformly. Since &’ can be chosen as small as we want, we set

~1
g = (/ D(y) dy) E.
Br(0)

We will now show that (1) holds. The argument here will be slightly simpler than what we did in
class, although conceptually it is the same.
From (3), compute

Bu(w) = [ @)A S 1) dy

Fix € > 0, and write

Au(z) = / L DS ) dy / B(y)Anf(z — ) dy. (4)

R™\ B¢ (0)

Since A, f is a continuous function and f has compact support, it follows that there exists a constant
M > 0 such that

|Af(z)| < M for all z € R™.
Thus

[, 2@t <ar [ o)y

Problem 3. Using polar coordinates, as done in class, estimate the integral on the right-hand side
of the previous expression and show that

lim P(y)Asf(z —y)dy =0.
e—0 Bg(O)

Solution. It follows from

1 € 1
< b(y)dy= ——— "L drdw < Ce2.
0= /5(0) (v) dy n(n—2)an/0 /Sn—l =z’ rdw < Ce

Problem 4. As done in class, use the chain rule to show that

/ S(y)Anf(a — ) dy = / B(y) A f(x —y) dy.
R™\ B. (0) R™\ B, (0)
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Solution. By the chain rule,

(@ = ) = Doulte - AL g ),

so that

52

o2 (f(z—y)) = 0if(z —y).

Thus (4) becomes
Au(z) =1+11I,

where

1= [ ewA.sa-y)dy

B:(0)

and

IT = / (y)Ayf(z —y)dy.
R™\ B-(0)
Integrating by parts, I1 becomes

/ B(y) Ay f(z —y)dy = / (V). Vyf (2 — y)) dy
R™\ B¢ (0) R™\ B¢ (0)

+ 2(1)0,(x — y)ids(y).
I(R™\B:(0))
Problem 5. Arguing similarly to problem 3, show that

lim ()0, f(z — y)ds(y) = 0.
€20 Ja(Rm\ B:(0))

Solution. Using continuity of the first derivatives of f and the fact that it has compact support, we
can find M > 0 such that

V| < M.
In particular,
0, f] < M.
Thus
0< / D)o, [z —pydsw)| <M [ o) ds(y)
O(R™\B:(0)) 9B:(0)

M 1
= / "1 dw < Ck,
n(n —2)ay, Jon-1 "2

which gives the result.
Integrating by parts again, I can still be written as

/ D) A, f (o —y)dy = / AD(y)f(z — ) dy
R\ B, (0) R™\ B, (0)

- / 0, ®(y) f(x — y)ds(y), +1T1
9(R™\ B¢ (0))
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where
11T = / (y) 0y f(x — y)ds(y).
O(R™\B:(0))

Since @ satisfies A® = 0 in R™\{0}, the first integral on the right-hand side of (5) vanishes. Com-
bining the above calculations then gives

Bu() =1~ | 0,0 (y)f(x — y)ds(y) + I1T. (6)
A(R™\B:(0))
Using (2) and problem 1, we can compute
1 ; 1 ;
8@'(@(9):_7%:_ﬁ&'
na, |yl nagly[* = Jy|
On 9(R™\B(0)), we have |y| = ¢ and f’j = —v; (recall that the negative sign appears because v

is the outer normal to O(R™\B.(0)), which is opposite to the normal to B.(0)). Thus, the above
becomes

1
no,en ! vi

9;®(y) =

and then

n

0,®(y) =Y 0:®(y)v;
=1

n
2 : 1 2
= 71y7/
nope™™

i=1

since |v| = 1. Using this into (6) gives

1
n—l/ flz —y)ds(y) + II1.
Mne O(R™\Be(0))

Taking the limit € — 0, using problems 3 and 5, and noticing that Au(z) does not depend on €, we
obtain

Au(z)=1—

Au(z) = — lim 1/ flz —y)ds(y).
O(R™\B(0))

e—0 nay e L
Notice that, as sets,
O(R™\B:(0)) = 0B:(0),

thus

. 1
Au(z) = — lim ——— /835(0) flz —y)ds(y).

e—0 na, e L
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Problem 6. Show that, upon changing variables, this last expression becomes

. 1
Au(x) = —;E%W /335(90) f(y)

Solution. Set z = x — y and notice that the Jacobian of this change of variables is equal to one.
Notice that na,e"~! is the volume of dB.(z),

. 1
Au(z) = = lim vol(9B.(z)) /aBs(x) 1)

The right-hand side is the average of f over 0B.(z). But if we average f over ever smaller concentric
spheres, the value of the average approaches the value of f at the center. Hence,

| 1 o
o vol(0B.(x)) ~/83€(:E) o) = f (@),

finishing the proof.
Problem 7. Solve Poisson’s equation, as above, in the case n = 2. Hint: chapter 8 of the textbook.
Solution. This is done in chapter 8 of the textbook, see corollary 8.2.
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