VANDERBILT UNIVERSITY, MATH 234 SPRING 14: THE POISSON
EQUATION IN R".

This is a mix of class notes and homework assignment, whose goal is to solve
—Au=f (1)
in R™.
From now on, it is assumed that n > 3. Let f € C?(R"), and assume that f has compact support.
Recall that in class we defined ® : R"\{0} — R by

1 1
2
n(n — 2)ay, |z|n—2’ @)
where «,, is the volume of the unit ball in R™.
Problem 1. Compute

O(x) =

82|l‘|,

and use this to show that there exists a constant C' > 0 such that
C c ..
|0;®| < W, 0;;®| < W? i,j=1,...,n,x #0.

Define v : R — R by

Recall that this can also be written as
u(w) = [ @0)f(a - ) dy Q
In class, we showed that u is well-defined, and that the second derivatives of w exist and satisfy
i (@) = [ @) a2 = )

Problem 2. Show that u,,,; is continuous. Recalling the definition of continuity, you have to show
that, given zo € R" and € > 0, there exists a § > 0, such that if [z — x| < J, then |ug.,(7) —
Ugz;(T0)| < €. Do this as follows. Fix e > 0. Write

i, (0) = ey ) = | [ @) oia, 0 = )y = [ V)L, (0 — ) ]
= ‘/n )(faiz; (2 = y) = faiz; (20 —y))dy‘

Use the continuity of fi,.,, and the fact that f has compact support (i.e., that supp(f) C Bg(0) for
some R > 0), to show that given ¢’ > 0, we can choose § > 0 so that

’urimj (1‘) = Ug;a; (.%0)’ < /]R” q)(y)‘fzizj (x - y) - f$i$j (l‘o - y)’ dy

<. / B(y) dy,
Br(0)

1



2 MATH 234 SPRING 14

provided that |z — 29| < §. Next, use the expression (2), and integration in polar coordinates (in n
dimensions), to show that &’ can be chosen so that

6’/ P(y) dy, < e,
Br(0)
as desired.

We will now show that (1) holds. The argument here will be slightly simpler than what we did in
class, although conceptually it is the same.
From (3), compute

Bu(w) = [ @)~ y)dy.

Fix ¢ > 0, and write

Au(z) = / (y)Anf(z — ) dy + / B(y)Anf(z — ) dy. (4)
= (0) R™\ B (0)

Since A, f is a continuous function and f has compact support, it follows that there exists a constant
M > 0 such that

|Af(z)| < M for all x € R".
Thus

[, 2w —pal < [ e

Problem 3. Using polar coordinates, as done in class, estimate the integral on the right-hand side
of the previous expression and show that

lim O(y)Azf(x —y)dy = 0.
tiy [ @A)

Problem 4. As done in class, use the chain rule to show that

/ B(y)Anfla — ) dy = / B(y) Ay f(x — ) dy.
R\ B, (0) R™\ B¢ (0)

Thus (4) becomes
Au(z) =1+ II,

where
1= [ ewA.sa -y dy
B:(0)
and
IT = / (y)Ayf(z —y)dy.
R7\B:(0)
Integrating by parts, II becomes

/ B(y)Ayf(x —y)dy = — / (VO(y), Vyf (@ — y)) dy
R™\ B¢ (0) R™\ B, (0)

+ / Q(y)0y f(x — y)ds(y).
d(R™\ B<(0))
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Problem 5. Arguing similarly to problem 3, show that

lim (y)0y f(z — y)ds(y) = 0.
e=0 Jo(rm\B.(0))

Integrating by parts again, I can still be written as
/ Q(y)Ayf(x—y)dy = / Ad(y)f(x —y)dy
R”\ B, (0) R™\B:(0)

- / 0@ (y) f(x —y)ds(y), +111
A(R™\B:(0))
where
17 = / ()0, f(x — y)ds(y).
O(R™\ B, (0))

Since ® satisfies A® = 0 in R™\{0}, the first integral on the right-hand side of (5) vanishes. Com-
bining the above calculations then gives

Bu(w) =1~ | 0,0 (y)f(x — y)ds(y) + I11. (6)
A(R™\B:(0))
Using (2) and problem 1, we can compute
1y 1 Yi
i@ (y) = ST Pl pa o
nam [y| nagly[** Jy|
On 9(R™\B(0)), we have |y| = ¢ and %' = —v; (recall that the negative sign appears because v

is the outer normal to d(R™\B.(0)), which is opposite to the normal to B.(0)). Thus, the above
becomes

1
9;®(y) = e LR
n

and then

n

0,P(y) = Y 0:®(y)v;
=1

since |v| = 1. Using this into (6) gives
1

na,en—1

Au(z)=1— / flz —y)ds(y) +111.
O(R™\B(0))
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Taking the limit & — 0, using problems 3 and 5, and noticing that Au(z) does not depend on e, we
obtain
1
Au(z) = — lim / flx—y)ds(y).
O(R™\B:(0))

e—0 naye™ L
Notice that, as sets,

a(Rn\BE (0)) = aBs(O)v

thus
) 1
Bufe) =~ lim -y /a T,
Problem 6. Show that, upon changing variables, this last expression becomes
) 1
Au(z) = — lim napen—1 /BBE(x) 1)

Notice that na,e” ! is the volume of 9B (x),

. 1
Aulw) = = lim B @) /aBs(x) uc

The right-hand side is the average of f over 0B.(z). But if we average f over ever smaller concentric
spheres, the value of the average approaches the value of f at the center. Hence,
1
lim — L / - f(2),
B 0B @) Jop. T =T

finishing the proof.
Problem 7. Solve Poisson’s equation, as above, in the case n = 2. Hint: chapter 8 of the textbook.
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