
VANDERBILT UNIVERSITY

MATH 234 — INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

SPRING 14.

Before doing this assignment, you should make sure you understand the proof of uniqueness of
solutions for the one-dimensional wave equation presented in class. This is also covered on section
5.5 of the textbook.

The goal of this assignment is to show uniqueness of solutions for suitable initial-boundary value
problems for the wave equation in more than one spatial dimension. In order to do so you will have
to use techniques from multivariable calculus, therefore you should brush up on those if necessary.

Recall that in class we looked at the following initial-boundary value problem for the one-dimensional
wave equation, 

utt − c2uxx = F (t, x), 0 < x < L, t > 0,

ux(t, 0) = a(t), ux(t, L) = b(t), t ≥ 0,

u(0, x) = f(x), ut(0, x) = g(x), 0 ≤ x ≤ L.

(1)

Let Ω be a bounded domain in Rn and denote by ∂Ω its boundary, assumed to be smooth. For
concreteness you can think that Ω is the the ball of radius one centered at the origin. Then, for
example, in n = 3 we have

Ω =
{

(x1, x2, x3) ∈ R3
∣∣x2

1 + x2
2 + x2

3 < 1
}
,

and

∂Ω =
{

(x1, x2, x3) ∈ R3
∣∣x2

1 + x2
2 + x2

3 = 1
}
.

Consider the following initial-boundary value problem for the wave equation in n spatial dimen-
sions, 

utt − c2∆u = F (t, x), x ∈ Ω, t > 0,

u(t, x) = h(t, x), x ∈ ∂Ω, t ≥ 0,

u(0, x) = f(x), ut(0, x) = g(x), x ∈ Ω.

(2)

Notice that here x denotes a point in n-dimensions, i.e., x = (x1, x2, . . . , xn). In particular, we avoid
the notation ~x.

Question 1. Explain why problem (2) is a higher dimensional analogue of (1). Notice, however,
that in (1), it is the derivative of u which is prescribed on the boundary of the interval [0, L], i.e., at
x = 0 and x = L, whereas in (2), it is rather the values of u itself (and not of its derivative) that
are given on the boundary ∂Ω. Explain how (1) has to be modified so that it looks more like (2),
and reciprocally how (2) would have to be changed in order to look more like (1). (hint: in class we
drew a picture with a “rectangle” in x and t coordinates, where we indicated the values of u(0, x),
ux(t, L) etc; drawing a similar picture in higher dimensions is useful in this problem. For the sake of
drawing the picture, of course, you can assume that n = 2 and that Ω is a ball).
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Question 2. Suppose now that n = 2. Define the energy

E(t) =
1

2

∫
Ω

[
(∂tu(t, x))2 + c2|∇u(t, x)|2

]
dx,

where ∇ is the gradient in R2 and |∇u(t, x)| is the norm of the vector ∇u(t, x) (multivariable
calculus!). Using the above energy, and an argument similar to the one employed in class for problem
(1), show uniqueness of solutions to (2).

Question 3. Repeat question 2 in n = 3 dimensions. What can you say about the general case of
arbitrary n?

Question 4. In class, we showed the so-called “finite propagation speed” property of the one-
dimensional wave equation, which included the definition of a domain of dependence region. For-
mulate a similar statement for the problem (2). What is the domain of dependence in this case?
Illustrate with a picture. Notice that you are not required to demonstrate the finite propagation
speed property here, only state it, indicating the relevant domain of dependence.


