
VANDERBILT UNIVERSITY, MATH 234 SPRING 14: ELEMENTARY

NOTIONS OF DISTRIBUTIONS.

1. Multi-indices.

A vector of the form α = (α1, . . . , αn), where each component αi is a non-negative integer, is
called a multi-index. Its order is defined as

|α| = α1 + · · ·+ αn.

Given a multi-index α, we define

Dαf(x) =
∂|α|f(x)

∂xα1
1 · · · ∂x

αn
n

= ∂α1
x1 · · · ∂

αn
xn f.

We also define the factorial of a multi-index as

α! = α1! · · ·αn!,

and multi-index powers of an element x ∈ Rn as

xα = xα1
1 · · ·x

αn
n .

If k is a non-negative integer, we also set

Dkf(x) =
{
Dαf(x)

∣∣∣ |α| = k
}
.

The sums ∑
|α|=k

and
∑
|α|≤k

mean, respectively, sum over all multi-indices α such that |α| = k and |α| ≤ k.

Problem 1.1. Let u : R4 → R be the function

u(x1, x2, x3, x4) = ex
2
1+x22

(
x3x4 − x3

1 sin(x1x3)
)
.

(a) Find D2u(x).
(b) Find ∑

|α|≤3

Dαu(x).

Solution. The multi-indices with |α| = 2 are (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2), (1, 1, 0, 0),
(1, 0, 1, 0), etc. The corresponding derivatives are easily computed. One also easily computes the
derivatives in part (b).

The following formulas are useful when we deal with functions with several variables. Students
are encouraged to “play” with them (for instance, choose |α| = k = 2 or 3, or even 4, and write
explicitly these formulas for functions of two or three variables).
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Multinomial theorem:

(x1 + · · ·+ xn)k =
∑
|α|=k

(
|α|
α

)
xα,

where (
|α|
α

)
=
|α|!
α!

.

Leibniz’s formula or product rule in several variables:

Dα(fg) =
∑
β≤α

(
α

β

)
DβfDα−βg,

where f, g : Ω ⊆ Rn → R, (
α

β

)
=

α!

β!(α− β)!
,

and β ≤ α means βi ≤ αi, i = 1, . . . , n.

Taylor’s formula in several variables and in multi-index notation:

f(x) =
∑
|α|≤k

1

α!
Dαf(0)xα +O(|x|k+1),

for each k = 1, 2, . . . .

2. Test functions.

Let Ω ⊆ Rn be a domain in Rn, and let C∞c (Ω) be the space of C∞ functions on Ω with compact
support. I.e.,

C∞c (Ω) =
{
f ∈ C∞(Ω)

∣∣∣ supp(f) ⊂ Ω, and supp(f) is compact
}
,

where supp(f) denotes the support of f . An element of C∞c (Ω) is called a test function.

Problem 2.1. Show that C∞c (Ω) forms a vector space.

Solution. If f, g ∈ C∞(Ω), then

supp(f + g) ⊆ supp(f) ∪ supp(g),

Since supp(f +g) is closed by the definition of support, and supp(f)∪ supp(g) is bounded since both
supp(f) and supp(g) are, we conclude that supp(f+g) is a compact set contained in Ω. Thus f+g is
a function with support that is compact and contained in Ω. The remaining axioms of vector spaces
are trivially verified.

Definition 2.2. We say that a sequence of functions {fj}∞j=1 ⊂ C∞c (Ω) converges, when j →∞, to

f ∈ C∞c (Ω), in the sense of C∞c (Ω), if: (1) there exists a compact set K ⊂ Ω such that supp(fj) ⊂ K
for all j, and (2) Dαfj converges uniformly to Dαf for every multi-index α. Sometimes we say simply
fj converges to f in C∞c (Ω), and write “fj → f in C∞c (Ω).”

In the above, uniform convergence means the following. A sequence of functions {fj}∞j=1, where
fj : Ω → R, converges uniformly to a function f : Ω → Rn, if, given ε > 0, there exists a N > 0,
such that

|fj(x)− f(x)| < ε,
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for every j ≥ N and every x ∈ Ω.

Problem 2.3. Consider the sequences of functions {fj}∞j=1 and {gj}∞j=1, where fj : [0, 1] → R is

given by fj(x) = xj

j! e
−jx, and gj : [0, 1]→ R is given by gj(x) = xj .

(a) Show that, for any fixed non-negative integer k, Dkfj converges uniformly to zero when j →∞.
(b) Show that, for any fixed x0 ∈ [0, 1), gj(x0) converges to zero when j → ∞, but that gj does

not converge to zero uniformly when j →∞.

Solution. (a) Let ε > 0 be given. Since we are interested in taking the limit j →∞, we can assume
without loss of generality that j > k. Using Leibniz’s formula (see above),

Dk(xje−jx) =
k∑
`=0

(
k

`

)
D`xjDk−`e−jx =

k∑
`=0

k!

(k − `)!`!
j(j − 1) · · · (j − `)xj−`(−j)k−`e−jx.

Thus ∣∣∣∣Dk

(
xj

j!
e−jx

)∣∣∣∣ ≤ k∑
`=0

k!

(k − `)!`!
xj−`jk−`e−jx, (1)

where we used that |(−j)k−`| = jk−` and

j(j − 1) · · · (j − `)
j!

≤ 1.

As e−jx ≤ 1 for x ∈ [0, 1], and xj−` ≤
(

1
2

)j−`
for x ∈ [0, 1

2 ], we obtain that∣∣∣∣Dk

(
xj

j!
e−jx

)∣∣∣∣ ≤ k∑
`=0

k!

(k − `)!`!

(
1

2

)j−`
jk−`, for x ∈ [0,

1

2
]. (2)

As an exponential increases faster than any polynomial,

lim
j→∞

(
1

2

)j−`
jk−` = lim

j→∞
2−(j−`)jk−` = 0.

Therefore, there exists a N1 > 0 such that

k∑
`=0

k!

(k − `)!`!

(
1

2

)j−`
jk−` < ε, for j ≥ N1, and x ∈ [0,

1

2
]. (3)

To treat the case x ≥ 1
2 , use the fact that e−jx is decreasing, and that 0 ≤ xj−` ≤ 1, to obtain from

(1), ∣∣∣∣Dk

(
xj

j!
e−jx

)∣∣∣∣ ≤ k∑
`=0

k!

(k − `)!`!
jk−`e−

j
2 , for x ∈ [

1

2
, 1]. (4)

Using again that an exponential increases faster than any polynomial,

lim
j→∞

e−
j
2 jk−` = 0.

Therefore, there exists a N2 > 0 such that

k∑
`=0

k!

(k − `)!`!
jk−`e−

j
2 < ε, for j ≥ N2, and x ∈ [

1

2
, 1]. (5)
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Set N = max{N1, N2}. Then, in light of (2), (3), (4), and (5), we obtain∣∣∣∣Dk

(
xj

j!
e−jx

)∣∣∣∣ < ε, for j ≥ N, and any x ∈ [0, 1],

what shows that Dkfj converges uniformly to zero.
(b) Since rj → 0 when j →∞ for any |r| < 1, it follows that xj → 0 for x ∈ [0, 1). But if x = 1,

xj = 1 for all j.

3. Distributions.

Definition 3.1. Let Ω ⊆ Rn be a domain in Rn. A map ϕ : C∞c (Ω)→ R is said to be continuous if
ϕ(fj)→ ϕ(f) for every sequence {fj}∞j=1 such that fj → f in C∞c (Ω).

Definition 3.2. A distribution on C∞c (Ω) is a map ϕ : C∞c (Ω) → R that is continuous and linear.
The space of all distributions on C∞c (Ω) is denoted D(Ω).

Distributions are also called generalized functions. If ϕ is a distribution and f a test function, it
is customary to write 〈ϕ, f〉 to denote ϕ(f).

The Dirac-delta function is the distribution δ given by

〈δ, f〉 = δ(f) = f(0),

for any test function f .

Problem 3.3. Show that δ, as defined above, is in fact a distribution, i.e., it is linear and continuous.

Solution. Linearity is immediate. For continuity, let {fj}∞j=1 be a sequence converging in C∞c (Rn)

to a limit f . Then in particular fj(0)→ f(0). Then

lim
j→∞
〈δ, fj〉 = lim

j→∞
fj(0) = f(0) = 〈δ, f〉,

showing the result.

Despite its name, the Dirac-delta function is not a function, and it does not make sense to talk
about its value at one point, e.g., δ(x). Sometimes one writes∫

Rn

f(x)δ(x) dx = f(0), (6)

but this is really meant as δ(f) = f(0), and point-wise values of δ, i.e., δ(x), are not defined. To see
this, suppose it were the case. Then, take the following sequence of functions

fε(x) =

{
exp

(
− ε2

ε2−|x|2

)
, |x| < ε,

0, |x| ≥ ε.

It is not difficult to see that fε ∈ C∞c (Rn). If δ(x) were a function, then

lim
ε→0

∫
Rn

δ(x)fε(x) dx = lim
ε→0

∫
Bε(0)

δ(x)fε(x) dx

≤ e−1 lim
ε→0

∫
Bε(0)

δ(x) dx

= 0,
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since

lim
ε→0

∫
Bε(0)

v(x) dx = 0

for any integrable function v, and (6) would imply that δ(x) is integrable. However, this contradicts
(6) since it should give

lim
ε→0

∫
Rn

δ(x)fε(x) dx = lim
ε→0

fε(0) = e−1.

There is nothing special about the point x = 0, and the Dirac-delta function at x is the distribution
δx given by

〈δx, f〉 = δx(f) = f(x),

where f is a test function.
Sometimes, one also sees the Dirac-delta “defined” by the following properties

δ(x− x0) =

{
0, x 6= x0,

∞, x = x0,
and

∫
Rn

f(x)δ(x− x0) dx = f(x0). (7)

Again, this formulas are not mathematically precise. They should be understood as follows. Define
the function

η(x) =

{
N exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

where N is a constant chosen so that ∫
Rn

η = 1.

Then, for fixed x0 ∈ Rn, define

ηε(x) =
1

εn
η

(
x− x0

ε

)
.

Notice that supp(ηε) ⊆ Bε(x0) and its integral equals one. If f is a test function, then∫
Rn

ηε(x)f(x) dx =

∫
Bε(x0)

ηε(x)f(x) dx.

Since f is continuous, it has a maximum and a minimum on the closed ball Bε(x0), so

min
Bε(x0)

f(x) = min
Bε(x0)

f(x)

∫
Bε(x0)

ηε(x) dx ≤
∫
Bε(x0)

ηε(x)f(x) dx ≤ max
Bε(x0)

f(x)

∫
Bε(x0)

ηε(x)f(x) dx = max
Bε(x0)

f(x).

But

lim
ε→0

min
Bε(x0)

f(x) = f(x0) = lim
ε→0

max
Bε(x0)

f(x),

and therefore

lim
ε→0

∫
Rn

ηε(x)f(x) dx = f(x0) = δx0(f).

Now, if in the above limit we forget about the integral and the function f , and take the limit ε→ 0
of ηε, the result will be zero everywhere, except at x0, where it blows up; moreover, the integral of ηε
is always equal to one. These are exactly the features described in (7). Thus, heuristically we think
of the distribution δx0 as the “limit” of the functions ηε.
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4. Derivatives and weak solutions.

Now we have the tools necessary to make sense of the formula

∆yΓ(x− y) = −δx (8)

saw in class, where Γ is the fundamental solution of the Laplacian. For this, let us define what we
mean by the derivative of a distribution.

Definition 4.1. Let ϕ ∈ D(Ω). Its derivative Dαϕ, where α is a multi-index, is the distribution
given by

〈Dαϕ, f〉 = (−1)|α|〈ϕ,Dαf〉.

The derivative of a distribution is also called a weak derivative.

Problem 4.2. Show that Dαϕ, as above defined, is in fact a distribution.

Solution. Linearity is trivial. For continuity, let {fj}∞j=1 ⊂ C∞c (Ω) be a sequence converging in

C∞c (Ω) to a limit f . By definition of Dαϕ,

lim
j→∞
〈Dαϕ, fj〉 = (−1)|α| lim

j→∞
〈ϕ,Dαfj〉.

From the definition of convergence in C∞c (Ω), we have that Dαfj converges uniformly to Dαf on a
compact set containing the supports of the functions fj . Thus Dαfj → Dαf in C∞c (Ω). Since ϕ is
continuous, it follows that

lim
j→∞
〈ϕ,Dαfj〉 = 〈ϕ,Dαf〉,

thus

lim
j→∞
〈Dαϕ, fj〉 = (−1)|α|〈ϕ,Dαf〉 = 〈Dαϕ, f〉.

Problem 4.3. Let u : R\{0} → R be the step (or Heaviside) function

u(x) =

{
0, x < 0,

1, x > 0.

(a) Show that u defines a distribution via

〈u, f〉 =

∫ ∞
−∞

u(x)f(x) dx.

(b) Show that the weak derivative of u is the Dirac-delta at zero, i.e., u′ = δ0.

Solution. (a) Since f has compact support, supp(f) ⊂ [−R,R] for some R. Then

〈u, f〉 =

∫ ∞
−∞

u(x)f(x) dx,=

∫ R

0
f(x) dx,

thus the expression is well-defined. Linearity follows from linearity of the integral. If fj → f in
C∞c (R), then, by the definition of convergence in C∞c (Ω), supp(fj) ⊂ [−R,R] for all j and some
R > 0. Therefore,

lim
j→∞
〈u, fj〉 = lim

j→∞

∫ R

0
fj(x) dx =

∫ R

0
lim
j→∞

fj(x) dx =

∫ R

0
f(x) dx =

∫ ∞
−∞

u(x)f(x) dx = 〈u, f〉.
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(b) Let R > 0 be such that supp(f) ⊂ [−R,R], and compute

〈u, f ′〉 =

∫ ∞
−∞

u(x)f ′(x) dx =

∫ R

0
f ′(x) dx = f(x)

∣∣∣R
0

= f(R)− f(0)

= −f(0) = −〈δ, f〉,

where we used that f(R) = 0 since supp(f) ⊂ [−R,R]. On the other hand, by definition,

〈u′, f〉 = −〈u, f ′〉,
which shows the result.

Equality (8) can now be understood as follows. The function Γ(x− y) defined on Ω\{x}, can be
viewed as a distribution Γx if we set

〈Γx, f〉 =

∫
Ω

Γ(x− y)f(y) dy,

where f ∈ C∞c (Ω).

Problem 4.4. Show that Γx, as above defined, is in fact a distribution. You are allowed to use the
results of previous assignments and what was done in class.

Solution. If u is integrable in Ω, then it defines a distribution by

〈u, f〉 =

∫
Ω
u(x)f(x) dx,

f ∈ C∞c (Ω). To see this, first notice that if we let K ⊂ Ω be a compact set such that supp(f) ⊂ K,
then ∣∣∣∣∫

Ω
u(x)f(x) dx,

∣∣∣∣ ≤M ∫
K
u(x) dx <∞,

since u is integrable, and where we used that |f | ≤ M for some M . Thus, 〈u, f〉 is well-defined.
Linearity follows from linearity of the integral. Finally, if fj → f in C∞c (Ω) and we choose a compact
set K ⊂ Ω such that supp(fj) ⊂ K for all j (which exists by the definition of convergence in C∞c (Ω)),
then

lim
j→∞
〈u, fj〉 = lim

j→∞

∫
K
u(x)fj(x) dx =

∫
K
u(x) lim

j→∞
fj(x) dx

=

∫
K
u(x)f(x) dx =

∫
Ω
u(x)f(x) dx = 〈u, fj〉.

The result now follows from the integrability of Γx over any compact set.

Formula (8) states that the weak derivative of Γx, as a distribution, equals the distribution −δx.

Problem 4.5. Show the above statement. You are allowed to use the results of previous assignments
and what was done in class.

Solution. This follows from the proof of existence for the Poisson equation.

The above examples illustrate how it is possible to meaningfully talk about derivatives of functions
that are discontinuous, such as u, or that blow-up, such as Γ(x − y), provided that we enlarge the
concept of derivative to include weak derivatives. This is also similar to situations that we studied
in class, where we used D’Alembert’s formula for the wave equation with discontinuous initial data.



8 MATH 234 SPRING 14

If we expand the concept of derivative to include weak derivatives, it is natural to expect that we
can enlarge the notion of solution of a PDE and talk about weak solutions, where the derivatives of
the solutions are understood as weak derivatives. Thus, for instance, exercise 4.3 says that we can
view u is a weak solution to the PDE

u′ = δ0.

The precise definition of weak solutions varies according to the specific equation at hand. But as a
general rule, the idea is that weak solutions will always involve considering some derivatives as weak
derivatives, or some similar variation.

URL: http://www.disconzi.net/Teaching/MAT234-Spring-14/MAT234-Spring-14.html


	1. Multi-indices.
	2. Test functions.
	3. Distributions.
	4. Derivatives and weak solutions.

