
VANDERBILT UNIVERSITY

MATH 234 — INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

PRACTICE TEST.

Question 1. Suppose f : [0, 1]→ R can be written as the following series

f(x) =
∞∑
n=0

(
cn sin(nπx) + dn cos(nπx)

)
.

Show that the coefficients cn and dn are given by

cn = 2

∫ 1

0
f(x) sin(nπx) dx, n = 0, 1, 2, . . . ,

dn = 2

∫ 1

0
f(x) cos(nπx) dx, n = 1, 2, . . . ,

d0 =

∫ 1

0
f(x) cos(nπx) dx.

Question 2. Explain the concept of well-posedness for a PDE.

Question 3. Let R2
+ be the upper half plane in R2, i.e.,

R2
+ =

{
(x, y) ∈ R2

∣∣∣ y > 0
}
.

Consider the boundary value problem
∆u = 0 in R2

+,

u = 0 for y = 0
∂u
∂y = 1

n sin(nx) for y = 0,

(1)

where n is a given positive integer. Use separation of variables to show that the function

u(x, y) =
1

n2

eny − e−ny

2
sin(nx) (2)

is a solution of (1).

Question 4. Taking the limit n→∞ in (1) and (2), what can you conclude about the well-posedness
of the boundary value problem (1)?

Question 4. Find the expression for the Laplacian in polar coordinates in two-dimensions.

Question 5. Consider the equation

uxx + 2uxy + uyy = 0.

Rewrite the equation in terms of the coordinates s = x, t = x− y.

Question 6. Let Ω be a domain in Rn. Show that the Laplacian ∆ is a linear map between Ck(Ω)
and Ck−2(Ω), k ≥ 2.

For questions 7 and 8 below, you are allowed to use short-cuts based on your previous experience
with these equations. For example, when you separate variables and have to analyze the different
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cases µ < 0, µ = 0, and µ > 0, you already know that one of these cases will give a solution
identically zero — you can simply state that, without showing all the work. You can also use the
formulas of problem 1, without redoing all the work.

Question 7. Solve the following boundary value problem
utt − uxx = 0, 0 < x < 1, t > 0,

u(t, 0) = 0, u(t, 1) = 0, t ≥ 0,

u(0, x) = f(x), ut(0, x) = g(x), 0 ≤ x ≤ 1,

where f and g are given functions.

Question 8. Solve the following boundary value problem
ut − uxx = 0, 0 < x < 1, t > 0,

ux(t, 0) = 0, ux(t, 1) = 0, t ≥ 0,

u(0, x) = f(x) 0 ≤ x ≤ 1,

where f is a given function.

Question 9. Let Ω be a domain in R3 containing the origin. Show that the function

Γ(x) =
1

|x|
satisfies

∆Γ = 0 in Ω\{0}.

Question 10. Let

Ω =
{

(x1, x2) ∈ R2
∣∣x2

1 + x2
2 < 1

}
.

Suppose u is a function on Ω that satisfies{
∆u = 0 in Ω,

u = 1 on ∂Ω.

What can you say about u(0, 0)?

In questions 11 to 15 below, Ω is a bounded domain in Rn.

Question 11. Prove uniqueness of solutions to the Dirichlet problem{
∆u = f in Ω,

u = g on ∂Ω,

where f and g are given functions.

Question 12. Prove that the following Neumann problem{
∆u = 1 in Ω,
∂u
∂ν = 0 on ∂Ω,

has no solution (hint: integration by parts). What can you say about the solvability of{
∆u = f in Ω,
∂u
∂ν = g on ∂Ω,
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where f and g are given functions?

Question 13. Show uniqueness of solutions to
utt − c2∆u = F (t, x), x ∈ Ω, t > 0,

u(t, x) = h(t, x), x ∈ ∂Ω, t ≥ 0,

u(0, x) = f(x), ut(0, x) = g(x), x ∈ Ω,

where F , h, f , and g are given functions.

Question 14. Let u be a solution of {
∆u− u = f in Ω,

u = 0 on ∂Ω,
(3)

where f is a given function.
Denote by α the maximum value of |f | (the absolute value of f) on Ω, i.e.,

α = max
Ω
|f |

Notice that α is a constant.
(a) Define v = u− α. Show that v satisfies{

∆v − v = α+ f in Ω,

v = −α on ∂Ω.

(b) By analyzing both the cases where the maximum of v is in the interior of Ω or on its boundary,
show that v(x) ≤ 0 for any x ∈ Ω. Conclude that

u ≤ α.
(c) Using similar ideas as above, show that u also satisfies

−α ≤ u,
and therefore any solution u of (3) satisfies

|u| ≤ max
Ω
|f |.

Question 15. Let u1 and u2 be respectively solutions of{
∆u− u = f1 in Ω,

u = g on ∂Ω,

and {
∆u− u = f2 in Ω,

u = g on ∂Ω,

where f1, f2 and g are given functions. Using the results of problem 14, what can you say about
u1 − u2?


