VANDERBILT UNIVERSITY, MATH 2300-04, F 20 EXAMPLES OF SECTION 14.7

MARCELO M. DISCONZI

Question 1. Find the absolute maximum and minimum values of $f(x,y) = 2x^3 + y^4$ on the region $D = \{(x,y) \mid x^2 + y^2 \le 1\}$.

Solution 1. Notice that the assumptions of the extreme value theorem are satisfied, thus we know that f attains an absolute maximum and absolute minimum in D.

We find $f_x(x,y) = 6x^2$ and $f_y(x,y) = 4y^3$, so $f_x(x,y) = 0 = f_y(x,y)$ gives x = y = 0, and f(0,0) = 0.

Next, we analyze the values of f on the boundary of D, which corresponds to $x^2 + y^2 = 1$, or

$$y^2 = 1 - x^2. (1)$$

Thus, on the boundary,

$$f(x,y) = 2x^3 + (1-x^2)^2 = x^4 + 2x^3 - 2x^2 + 1,$$

where $-1 \le x \le 1$. Thus, we seek to find the maxima and minima of $g(x) = x^4 + 2x^3 - 2x^2 + 1$ on the interval [-1, 1]. Compute

$$g'(x) = 4x^3 + 6x^2 - 4x.$$

Setting g'(x)=0 gives $x=0,\ x=-2,\ \text{or}\ x=\frac{1}{2}$. From (1) we have the corresponding y values $y=\pm 1,\ y=-3,\ \text{and}\ y=\pm \frac{\sqrt{3}}{2},\ \text{hence}$ we need to check the values of f at $(0,\pm 1)$ and $(\frac{1}{2},\pm \frac{\sqrt{3}}{2}).$ Notice that $(-2,-3)\notin D.$ The function g can have a maximum or minimum at the endpoints $x=\pm 1,\ \text{corresponding}$ to $y=0,\ \text{hence}$ we also need to check f at (1,0) and (-1,0).

We find $f(0,\pm 1)=1$, $f(\frac{1}{2},\pm \frac{\sqrt{3}}{2})=\frac{13}{16}$, f(1,0)=2, and f(-1,0)=-2. Therefore, the absolute maximum is 2, occurring at (1,0), and the absolute minimum is -2, occurring at (-1,0).