VANDERBILT UNIVERSITY, MATH 2300-04, F 20 EXAMPLES OF SECTION 14.6

MARCELO M. DISCONZI

Question 1. The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (1, 2, 2) is 120° .

(a) Find the rate of change of T at (1, 2, 2) in the direction toward the point (2, 1, 3).

(b) Show that at any point in the ball the direction of greatest increase in temperature is given by a vector that points toward the origin.

Solution 1. (a) The distance from (x, y, z) to the center is

$$\sqrt{x^2 + y^2 + z^2}$$

so that

$$T(x, y, z) = \frac{k}{\sqrt{x^2 + y^2 + z^2}}$$

where k is a constant. Since T(1, 2, 2) = 120 we have that k = 360, thus

$$T(x, y, z) = \frac{360}{\sqrt{x^2 + y^2 + z^2}}$$

A vector from (1, 2, 2) to (2, 1, 3) is (2, 1, 3) - (1, 2, 2) = (1, -1, 1). Normalizing it we find

$$\mathbf{u} = \frac{1}{\sqrt{3}} \langle 1, -1, 1 \rangle.$$

Computing the gradient, we find

$$\nabla T(x, y, z) = -360(x^2 + y^2 + z^2)^{-\frac{3}{2}} \langle x, y, z \rangle, \tag{1}$$

so that

$$D_{\mathbf{u}} = \nabla T \cdot \mathbf{u}$$

= $-360(x^2 + y^2 + z^2)^{-\frac{3}{2}} \langle x, y, z \rangle \cdot \frac{1}{\sqrt{3}} \langle 1, -1, 1 \rangle$
= $-\frac{360}{\sqrt{3}} (x^2 + y^2 + z^2)^{-\frac{3}{2}} (x - y + z).$

Plugging in (1,2,2) we find $D_{\mathbf{u}}T(1,2,2) = -\frac{40}{3\sqrt{3}}$.

(b) The direction of greatest increase is parallel to the gradient of T. From (1) we see that the gradient points in the direction opposite to $\langle x, y, z \rangle$, hence toward the origin.