VANDERBILT UNIVERSITY, MATH 2300-04, F 20 EXAMPLES OF SECTION 12.4

MARCELO M. DISCONZI

Question 1. Show that $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} and that its direction is given by the right-hand rule. Assume that the vectors are non-zero and non-parallel.

Solution 1. Compute

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle \cdot \langle u_1, u_2, u_3 \rangle = (u_2 v_3 - u_3 v_2) u_1 + (u_3 v_1 - u_1 v_3) u_2 + (u_1 v_2 - u_2 v_1) u_3 = u_2 v_3 u_1 - u_3 v_2 u_1 + u_3 v_1 u_2 - u_1 v_3 u_2 + u_1 v_2 u_3 - u_2 v_1 u_3 = 0.$$

Similarly one shows that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$.

For the second part, given **u** and **v**, consider their initial points at the same point in space. Define a Cartesian coordinate system such that the *xy*-plane contains **u** and **v** and such that the *x*-axis points along **u**. Then $\mathbf{u} = \langle u_1, 0, 0 \rangle$ and $\mathbf{v} = \langle v_1, v_2, 0 \rangle$, and $u_1 > 0$. Therefore

$$\mathbf{u} \times \mathbf{v} = \langle 0, 0, u_1 v_2 \rangle.$$

From this we conclude that if $v_2 > 0$ then $\mathbf{u} \times \mathbf{v}$ points in the positive z-direction, and if $v_2 < 0$ then $\mathbf{u} \times \mathbf{v}$ points in the negative z-direction, agreeing with the right-hand rule.