VANDERBILT UNIVERSITY

MATH 2300 - MULTIVARIABLE CALCULUS

Solutions to the Practice Final

Directions. This practice test should be used as a study guide, illustrating the concepts that
will be emphasized in the test. This does not mean that the actual test will be restricted to the
content of the practice. Try to identify, from the questions below, the concepts and sections that
you should master for the test. For each question in the practice test, study the ideas and techniques
connected to the problem, even if they are not directly used in your solution.

Take this also as an opportunity to practice how you will write your solutions in the test. For
this, write clearly, legibly, and in a logical fashion. Make precise statements (for instance, write an
equal sign if two expressions are equal; say that one expression is a consequence of another when
this is the case, etc).
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Question 1. Find the limits or show that they do not exist.

4

(a)  lim Qxy 5
(z.y)—=(0,0) 2 + Yy

$2y2Z2

b i _
(b) (:c,y,z)il%0,0,0) 2 + y2 + 22

Solution 1. (a) Let f(z,y) = m;”_?izs. Since f(z,0) =0 for z # 0, f(z,y) — 0 as (z,y) — (0,0)
along the z-axis. Along the curve x = y*, f(z,y) = f(y*,y) = 1/2 for y # 0, so f(z,y) — 1/2

along this curve and the limit does not exist.

(b) We have
2,22

T Y-z 2 9
S Er iR <zy* =0 as (z,y,2) — (0,0,0),

thus the limit is zero by the squeeze theorem.
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Question 2. Express the given integral as an iterated integral in Cartesian coordinates in six
different ways.

) [[[ s
D

where D is the solid bounded by y = 4 — 22 — 422 and y = 0.

Qﬂuéaéllff@;%zﬁhdxdy

Solution 2. (a) The region of integration can be described as
D:{—2gx§2,0§y§4—m2,—%mSzg%M}
—{0<y<4—iy<e< Iy Vi@ oy<z< Vi-atoy)
={-1<2<1,0<y<4-422 Vi-y-42 <o <\/d—y— 422}
={0§y§&—%¢2f§§zs%v%—%—v%—y—@Qstv@?ZiZ?}
:{—2§x§2,—%ﬂgzg%\/m,ogygél—x?—zlﬁ}
—{1<2<1,Vi-422 <2< V4-4220<y<4—a®— 422},

4—22 4— :1:273/
// flz,y,2)dV = / / / f(z,y,2)dzdydx
% 4—x2—y

4 x2
// / flx,y,2)dzdxdy
1
11—z
4—422 4 y— 422
/ / / f(z,y,2)dedydz
4 y— 422
1V/i—y VA—y—42?
// / f(x,y,z)dedzdy
4 y— 4z2
Vi—z2  pd—z?-422
/ / / flz,y,z)dydzdz
iz
Va—422  p4—a?—422
/ / / flx,y,z)dydxdz.
Via—4z2

(b) From the limits of integration we see that the region of integration is the tetrahedron with
vertices at (0,0,0), (1,1,1), (1,1,0), and (1,0,0), i.e

Then

D={0<y<ly<z<1,0<z<y}
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The other five ways to describe the region are
D={0<z<1,0<y<z0<z<y}
={0<y<1,0<2<y,y<x <1}
={0<z2<,z<y<ly<z<l1}
={0<z<1,0<z<zz<y<uz}
={0<z<l,z<z<1,z<y<uz}

/Ol/yl/oyf(m,y,z)dzdxdy:/Ol/ox/oyf(x’%z)dzdydx
:/Ol/oy/ylf(x,y,z)da:dzdy
[ [ s
:/Ol/ox/jf(xay,z)dydzdx
:/Ol/zl/jf(w,y,z)dydxdz.

Thus,
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Question 3. Use multiple integrals to compute the volume and the surface area of a sphere of
radius R.

Solution 3. The sphere is given by z? + y? 4+ 22 = R? in Cartesian coordinates, or by p = R,
0<¢<m, 0<80 <27 in spherical coordinates.
The volume enclosed by the sphere is

Volume = / / / dav
|4
:/J/p2s1n¢dpd¢d9
:/Owd@/oﬂsingﬁdd)/oRdep
R

P
=27 (—cos @)} T

0
4 3
= -—7mR°.
3
To compute the surface area, we parametrize the sphere by

r(¢,0) = Rsin¢cosfi+ Rsin¢gsinfj+ Rcos ok,
with 0 < ¢ <7 and 0 <0 < 27. Then
ry X rg = R%sin% ¢ cos0i+ R%sin? ¢sinfj+ R%sin ¢ cos ¢ k,
and

vy x rg| = R*sin .

Area—//dS
S
://]r¢><r9\dA
D
2 ™
—/ /R2s1n¢d¢d6
0 0

= 27R? (—cos )|}
— 47 R%.

The surface are of the sphere is



6

VANDERBILT

Question 4. Let R be the region in the zy-plane bounded by the lines x = 2y, z = 2y + 4,

3r=y+1, and 3x =y + 8.

(a) Find a change of variables that maps a rectangular region S in the uv-plane onto R, where the
sides of S are parallel to the u— and v—axes.

(b) Use your answer in part (a) to evaluate the integral

R

dA.

Solution 4. (a) Let u =z —2y and v = 3z —y. Then 2 = (2v —u) and y = £ (v — 3u), and R is
the image of the rectangle 0 < u <4, 1 <v < 8.

(b) We compute

so that

2

5 1

1|5

5
I(z,y)
O(u,v) a4
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Question 5. Let F(z,y) = i+ $2+y2 j. Show that

/F-dr:27r,
c

for every simple curve C' that encloses the origin and is oriented counterclockwise.
Solution 5. Write F = Pi+ Qj. For (x,y) # (0,0),

8@(95, y) _ y2 — xQ _ 8P(1:7 y)
or (224422 9y
and the hypotheses of Green’s theorem hold in any region that does not contain the origin. Let

C. be a circle of radius r oriented counterclockwise, centered at the origin and contained in inside
the region bounded by C. Let D be the region between C, and C, so that 0D = (—C,) UC. By

Green’s theorem
/ (Pdx + Qdy) = //aQ—apdAzo.
oD

/ (de+Qdy):/(Pdm+Qdy)+/ (Pdz+ Qdy)
oD c —Cr

:/Fdr—/ F-dI‘,
C r
/F-dr:/ F -dr.
C r

Parametrizing C, by r(t) = rcosti+ rsintj, 0 <t < 27, we find

/ F.dr = /OQWF(r(t)) ' (t) dt

r

e +y

But

so that

= 2.

_/27r (—TSth)(—rsint)—I—?“costrcostdt
o 2
0 r
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Question 6. (a) State Green’s theorem.

(b) Use Green’s theorem to show that the area of a planar region D is given by

1
A= xdy:—/ ydx:/ (xdy — ydz).
oD oD 2 Joap

(c) Suppose that the vertices of a polygon, in counterclockwise order, are (z1,y1), (z2,%2), ...,
(zn,yn). Show that the area of the polygon is

A= ((961y2 — x9y1) + (zoy3 — x3y2) + - + (Tn—1Yn — TnYn—1) + (Tny1 — xlyn)>.

Solution 6. (a) Page 1136 of the textbook.

(b) We know that
A= [[aa
D

To apply Green’s theorem, we seek functions P and () such that
0Q OP

or Oy

We can choose P(z,y) = 0 and Q(z,y) = x, in which case

A= //dA // (2-5) _/aD(Pda:qLQdy):/aD:cdy.

Alternatively, we can also choose P(z,y) = —y and Q(z,y) = 0, in which case
P
A= //dA // (529 / (de+Qdy):—/ yde.
dy 8D 8D
Yet another possibility is P(z,y) = y and Q(z,y) = 23: so that

A= //dA // @JLP _/8D<pdx+Qdy):;[9D(xdyyd@.

(c) Consider two consecutive vertices (z;,y;) and (z;+1,yi+1). Let C; be the line segment joining
(zi,yi) to (Tit1,Yi+1), © = 1,...,n, with the convention that (,41,yn+1) = (r1,%1). Let us

compute
/ (xdy — ydx).
C;
To do so, we can parametrize C; as

r; = ((1—t)a; +tzipr)i+ (L -ty +tyir1)j, 0 <t < 1
Then, in parametric form,
x=(1—t)x; +trit1,
so that
dr = (vi41 — x;) dt,
and
y= 1=y + tyis1,



VANDERBILT 9

so that

dy = (Yiy1 — yi) dt.
Therefore,

1
[ @ay—yan) = [ (0= 0+ i) =90 + (0= O+ i) w11 — ) e
C; 0

! (1)
—/ (TiYit1 — Tig2ys) dt
0

= TiYi+1 — Ti+1Yi-

Denoting by D the region enclosed by the polygon, from part (b) we have

1 1 &
A:/ rdy —ydr) == / rdy —ydx).
K =52 [, )

Using (1) yields the desired result.
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é/F-dS,

where F(z,y,2) = —zi—yj+ 2%k, and S is the part of the cone z = /22 + y2 between the planes
z=1and z = 3.

Solution 7. The surface S is the graph of the function z(z,y) = /22 + 9%, 1 < 2% +5? <9, thus
we can write it as a parametrize surface by

r(z,y) =zi+yj+ V22 +y2k.

Recall that (page 1170 of the textbook)

Question 7. Evaluate

F.-(rpxry)=(Pi+Qj+ Rk)- (——xi—fj—i- k)

when the normal points upward. In our case, following the convention that the normal points
outward, it points downward from the graph, thus,

//Fds— K/ E9—”’—@ L R)dA

T Yy
‘é/ S e Y g

-/ j%yy (VAT H 7)) dA.
D

+ (V22 +y2)?) dA

Using cylindrical coordinates,

27
// 2> +y x2+y / / — + %) rdrdf
/s \/xQ—i—y

3 1712
= ——Tm.
) 15

1 1
o on (L8 1,5
7r(3r +5r)
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Question 8. (a) State Stokes’ theorem.

(b) Use Stoke’s theorem to evaluate [, F -dr, where F(z,y,2) = xyi+yzj+ zoxk and C is the
boundary part of the paraboloid z = 1 — 22 — y? in the first octant.

Solution 8. (a) Page 1174 of the textbook.

(b) By Stokes’ theorem
/F-dr://curlF-dS,
¢ S

where S is any surface satisfying the assumption of Stokes’ theorem that has C' as boundary. We
orient C' counterclockwise as seen from above, and take S to be the paraboloid z = 1 — 22 — ¢/?
oriented upward. Then S is given as a graph over 0 < z2 + 4% <1, £ >0, y > 0, and thus

curl F - (g x 1) = (P14 Qi+ RK) - (-1 - 525+ k),

where curl F = Pi+ Qj+ Rk. Computing
curl F = —yi—2j—xk,

[ cuntds = [[(~-20) - (220 + (o)
S D

= //(—2953/ —2y(1 — 2 — y?) — x) dA.
D

hence

Integrating in polar coordinates

Tl
//(—2xy —2y(1 — 22 — %) —2)dA = /2 / (—2r cos Orsin§ — 2rsin §(1 — r2) — r cos O)r dr df
0 0
D

3 1l
= / / (—2r3sinfcosf — 2(r> — r1)sin@ — 7% cos 0) dr df
o Jo

z 4 3 .5 3 r=1

r r r
_ o o” e
/0 ( 5 sin 0 cos 0 (3 5)sm0 3 cos 0) . db

jus 1 4 1
:/02(_25in9005«9— 1—5$in9— gcose)dﬁ

1 4 1 2
= (—=sin’0 + — cos — = sin6)
1 15 3 .
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Question 9. (a) State the divergence theorem.

(b) Use the divergence theorem to evaluate

é/FdS,

where F(z,y, z) = 3zy?i +xe*j + 23k, and S is the surface of the solid bounded by the cylinder
y? + 22 = 1 and the planes * = —1 and z = 2.

Solution 9. (a) Page 1181 of the textbook.
(b) Compute
divF = 3y 4+ 0 4 322

é/F-dS:/D//(:’)yM?)z?)dv.

Integrating in cylindrical coordinates with y = rcosf, z = rsiné, and = = z,

2 1 p2
///(3y2 +32%)dV = / / / (3r2 cos® 6 + 3r? sin” O)r dx dr df
s o Jo J1
2 1 2
:3/ d9/ r3dr/ dngl.
0 0 —1 2

By the divergence theorem,
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é/F-dS,

Question 10. Evaluate

where
r
F(r) = W’
and S is any closed surface that encloses the origin.
Solution 10. A direct computation gives
divF = 0.

Let S, be a sphere of radius r centered at the origin and contained inside the region bounded by
S. Then, by the divergence theorem

///dideV:O://F-ndS—//F-nrdS,
D S Sy

where n and n, are the unit outer normal to S and S,., respectively, both pointing outward. Since
_ I
n, = 1, we find
r r
Fon=— —=—.
P fe[ 2

//F-dS://F-nrdS://ZdS:zm.
r
S Sr Sy

Thus,



