VANDERBILT UNIVERSITY

MATH 2300 - MULTIVARIABLE CALCULUS

Examples of section 15.3

Question 1. Find the volume of the solid bounded by the paraboloids $z = 6 - x^2 - y^2$ and $z = 2x^2 + 2y^2$.

Solution 1. The paraboloids intersect when $6-x^2-y^2=2x^2+2y^2$, or when $x^2+y^2=2$. For $x^2+y^2\leq 2$, the paraboloid $z=6-x^2-y^2$ is above $z=2x^2+2y^2$. Thus

$$V = \iint_{x^2+y^2 \le 2} [(6-x^2-y^2) - (2x^2+2y^2)] dA$$

$$\iint_{x^2+y^2 \le 2} [6-3(x^2+y^2)] dA.$$

Since $x^2 + y^2 \le 2$ corresponds to $r \le \sqrt{2}$ polar coordinates, we find

$$V = \int_0^{2\pi} \int_0^{\sqrt{2}} (6 - 3r^2) r \, dr d\theta$$
$$= \int_0^{2\pi} d\theta \int_0^{\sqrt{2}} (6r - 3r^3) \, dr$$
$$= 6\pi.$$