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Question 1 [20 pts]. Find the general solution of the systems below.

(a) x′ =

[
2 −3
1 −2

]
x.

Solution. Compute

det

[
2− λ −3

1 −2− λ

]
= (2− λ)(−2− λ) + 3 = λ2 − 1 = 0,

giving λ1 = 1, λ2 = −1.
λ1 = 1. We solve [

2− λ1 −3
1 −2− λ1

]
u =

[
1 −3
1 −3

]
u = 0.

Writing u = (z, w), we find z = 3w, so that eigenvectors are u1 = s(3, 1), where s is a free variable. A
linearly independent solution is then x1 = et(3, 1).
λ2 = −1. We solve [

2− λ2 −3
1 −2− λ2

]
u =

[
3 −3
1 −1

]
u = 0.

Writing u = (z, w), we find z = w, so that eigenvectors are u2 = s(1, 1), where s is a free variable. A
second linearly independent solution is then x2 = e−t(1, 1).

The general solution is x = c1x1 + c2x2.



MATH 208 - TEST 2 3

(b) x′ =


−1 2 0 0
−1 3 0 0

0 0 2 −3
0 0 1 −2

x.
Hint: use your answer from (a).
Solution. Solutions x can be broken as x = (X1, X2, 0, 0) + (0, 0, X3, X4), where (X1, X2) solves[

X1

X2

]′
=

[
−1 2
−1 3

] [
X1

X2

]
,

and (X3, X4) solves [
X3

X4

]′
=

[
2 −3
1 −2

] [
X3

X4

]
.

(X3, X4) was found in the previous question.
Compute

det

[
−1− λ 2
−1 3− λ

]
= (−1− λ)(3− λ) + 2 = 0,

giving λ = 1±
√

2.
λ = 1 +

√
2. We solve [

−2−
√

2 2

−1 2−
√

2

]
u = 0.

Writing u = (z, w), we find z = (2−
√

2)w, so this gives u = s(2−
√

2, 1), where s is a free variable.
λ = 1−

√
2. We solve [

−2 +
√

2 2

−1 2 +
√

2

]
u = 0.

Writing u = (z, w), we find z = (2 +
√

2)w, so this gives u = s(2 +
√

2, 1), where s is a free variable. We
get that (X1, X2) is a linear combination of

e(1+
√
2)t

[
2−
√

2
1

]
and

e(1−
√
2)t

[
2 +
√

2
1

]
.

Hence

x1 = e(1+
√
2)t


2−
√

2
1
0
0

 ,

x2 = e(1−
√
2)t


2 +
√

2
1
0
0

 ,
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x3 = et


0
0
3
1

 ,
and

x3 = e−t


0
0
1
1

 ,
are four linearly independent solutions, and x = c1x1 + c2x2 + c3x3 + c4x4 is the general solution.
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Question 2 [20 pts]. Determine eAt if

A =

 5 −4 0
1 0 2
0 2 5

 .
Hint: You can use that  −4 −2 5

−5 0 1
2 1 0

−1 =
1

25

 1 −5 2
−2 10 21

5 0 10

 .
Solution. Compute

det

 5− λ −4 0
1 −λ 2
0 2 5− λ

 = −λ(λ− 5)2,

so λ1 = 0 and λ2 = 5 are the eigenvalues, with λ2 of multiplicity two.
To find an eigenvector associated with λ1, we solve

5 −4 0
... 0

1 0 2
... 0

0 2 5
... 0

 .
Applying Gauss-Jordan elimination we find u1 = (−4,−5, 2), and x1 = e0tu1 = (−4,−5, 2) is a solution to
x′ = Ax.

Next, we move to λ2, and consider: 
0 −4 0

... 0

1 −5 2
... 0

0 2 0
... 0

 .
Applying Gauss-Jordan elimination, we find

1 0 2
... 0

0 1 0
... 0

0 0 0
... 0

 .
Thus, this system has only one free variable, yielding only one linearly independent eigenvector which
we can take to be u2 = (−2, 0, 1). Hence x2 = e5t(−2, 0, 1) is a second linearly independent solution to
x′ = Ax. To find a third linearly independent solution, we need to find a generalized eigenvector associated
with λ2 = 5. Compute

(A− 5I)2 =

 0 −4 0
1 −5 2
0 2 0

2

=

 −4 20 −8
−5 25 −10

2 −10 4

 .
Now we solve 

−4 20 −8
... 0

−5 25 −10
... 0

2 −10 4
... 0

 .
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Applying Gauss-Jordan elimination gives
−1 5 −2

... 0

0 0 0
... 0

0 0 0
... 0

 ,
which has two free variables that yield two linearly independent generalized eigenvectors u2 = (−2, 0, 1)
and u3 = (5, 1, 0) (notice that we already knew from above that u2 is a solution since it is an eigenvector).
To find a third (linearly independent) solution to x′ = Ax, compute

x3 = eAtu3 = e5t(u3 + t(A− 5I)u3) = e5t

 5
1
0

+ te5t

 0 −4 0
1 −5 2
0 2 0

 5
1
0

 = e5t

 5− 4t
1
2t

 .
A fundamental matrix is now given by X = [x1 x2 x3], i.e.,

X(t) =

 −4 −2e5t e5t(5− 4t)
−5 0 e5t

2 e5t 2e5tt

 .
Recall that eAt = X(t)(X(0))−1. Plugging t = 0 into X(t) and using the hint we find

(X(0))−1 =
1

25

 1 −5 2
−2 10 21

5 0 10

 .
Thus,

eAt = X(t)(X(0))−1 =
1

25

 −4 −2e5t e5t(5− 4t)
−5 0 e5t

2 e5t 2e5tt

 1 −5 2
−2 10 21

5 0 10


=

1

25

 −4 + 29e5t − 20te5t 20− 20e5t −8 + 8e5t − 40te5t

−5 + 5e5t 25 −10 + 10e5t

2− 2e5t + 10te5t −10 + 10e5t 4 + 21e5t + 20te5t

 .



MATH 208 - TEST 2 7

Question 3 [20 pts]. Find the general solution of

x′ =

[
1 2
2 1

]
x+

[
6e3t

2e3t

]
.

Solution. There are two possible methods, one using undetermined coefficients and another using variation
of parameters.

First, we compute the eigenvalues of the matrix A =

[
1 2
2 1

]
. They are λ1 = 3 and λ2 = −1. Two

eigenvectors associated with λ1 and λ2 are, respectively,

u1 =

[
1
1

]
and u2 =

[
−1
1

]
,

so that

x1 =

[
1
1

]
e3t and x2 =

[
−1
1

]
e−t

are two linearly independent solutions of the associated homogeneous equation.

Solution using variation of parameters. From the previous calculations, we have a fundamental
matrix

X(t) =

[
e3t −e−t
e3t e−t

]
.

Recalling that an invertible matrix of the form [
a b
c d

]
has inverse given by

1

ad− bc

[
d −b
−c a

]
,

one immediately finds

(X(t))−1 =
1

2

[
e−3t e−3t

−et et

]
.

Next, invoke the formula

xp = X(t)

∫
(X(t))−1f(t) dt =

1

2

[
e3t −e−t
e3t e−t

] ∫ [
e−3t e−3t

−et et

] [
6
2

]
e3t dt,

which gives

xp =
1

2

[
e3t −e−t
e3t e−t

] ∫ [
8
−4e4t

]
dt.

Performing the integral:

xp =

[
4
4

]
te3t +

1

2

[
1
−1

]
e3t.

Solution using undetermined coefficients. As the inhomogeneous term in the equation is of the form
(vector)×e3t, in order to find a particular solution, we try

xp = ae3t =

[
a1
a2

]
e3t.
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Plugging into the equation yields

3

[
a1
a2

]
e3t =

[
a1 + 2a2
2a1 + a2

]
e3t +

[
6
2

]
e3t.

This leads to {
2a1 − 2a2 = 6,

−2a1 + 2a2 = 2,

which is an inconsistent system. Therefore, we change our initial guess and now attempt

xp = ate3t =

[
a1
a2

]
te3t.

Plugging into the equation, [
a1
a2

]
e3t =

[
−2a1 + 2a2
2a1 + 2a2

]
te3t +

[
6
2

]
e3t.

Setting the terms with t and without t on each side equal to each other produces{
2a1 − 2a2 = 0,

−2a1 + 2a2 = 0,

and {
a1 = 6,

a2 = 2.

It is impossible to satisfy both systems at the same time, thus, again, our attempt has failed to produce a
particular solution.

Following the ideas developed in class, we now try

xp = ate3t + be3t =

[
a1
a2

]
te3t +

[
b1
b2

]
e3t.

Plugging into the equation gives[
6
2

]
e3t =

[
2a1 − 2a2
−2a1 + 2a2

]
te3t +

[
a1 + 2b1 − 2b2
a2 − 2b1 + 2b2

]
e3t.

Setting the terms with t and without t on each side equal to each other,{
2a1 − 2a2 = 0,

−2a1 + 2a2 = 0,

and {
a1 + 2b1 − 2b2 = 6,

a2 − 2b1 + 2b2 = 2.

In other words, we obtain the following system of four unknowns and four equations:
2a1 − 2a2 = 0,

−2a1 + 2a2 = 0,

a1 + 2b1 − 2b2 = 6,

a2 − 2b1 + 2b2 = 2.
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Using Gauss-Jordan elimination, we find a1 = 4, a2 = 4, b1 = 1 + b2, and b2 undetermined (i.e., a free
variable). As discussed in class, we can set b2 = 0, finally obtaining

xp =

[
4
4

]
te3t +

[
1
0

]
e3t.

The general solution is then x = c1x1 + c2x2 + xp, where c1 and c2 are arbitrary constants.

Remark: To see that this agrees with the previous solution, write

1

2

[
1
−1

]
e3t =

[
1
0

]
e3t − 1

2

[
1
1

]
e3t

and recall that

[
1
1

]
e3t is a solution of the associated homogeneous equation.
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Question 4 [20 pts]. Let F : Rn → Rn be given by F (x) = |x|2x, where |x| is the norm of x. What can
you say about the existence and uniqueness of solutions of{

x′ = F (x)

x(0) = x0
?

Solution. We shall prove that the system has a unique solution defined on some time interval (−ε, ε),
ε > 0, by showing that F is Lipschitz in a neighborhood of x0. First notice that the map x 7→ |x|2 is the
composition of a Lipschitz and smooth maps. Estimate:

|F (x)− F (y)| = | |x|2x− |y|2y |
= | |x|2x− |x|2y + |x|2y − |y|2y |
≤ | |x|2x− |x|2y |+ | |x|2y − |y|2y |
= |x|2 |x− y|+ ||x|2 − |y|2| |y|
= |x|2 |x− y|+ |y| | (|x|+ |y|)(|x| − |y|) |,
≤ |x|2 |x− y|+ |y|(|x|+ |y|)|x− y|,

where in the last step we used that | |x| − |y| | ≤ |x− y|. Let K be a constant such that |x0| < K. Then,
for all x, y such that |x| ≤ K and |y| ≤ K, we have |F (x)− F (y)| ≤ 3K2|x− y|, and the result follows.
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Question 5 [20 pts]. Let A be a (constant) n× n matrix, let B(t) be an n× n matrix valued function,
and let f(t) a vector valued function. Suppose that B(t) and f(t) are continuous.

(a) Suppose that λ is an eigenvalue of A. Show that eλ is an eigenvalue of eA.

(b) Let x1, . . . , xn be n solutions of x′ = Ax. Set

X =
[
x1 x2 · · · xn

]
.

Prove that X ′ = AX.

(c) Let Y (t) be a fundamental matrix for the system x′(t) = B(t)x(t). Derive a formula for the function
v(t) so that xp(t) = Y (t)v(t) is a particular solution of the system x′(t) = B(t)x(t) + f(t).

(d) What can you say about eA+B(0), where A and B are as above?

Solution.
(a) If Ax = λx, x 6= 0, then A2x = Aλx = λ2x, A3x = AA2x = Aλ2x = λ3x, and so on. Thus

eAx =

∞∑
n=0

An

n!
x

=
∞∑
n=0

λn

n!
x

= eλx.

(b) By the definition of multiplication of matrices, the jth column of AX is given by Axj . But since xj
is a solution, i.e., x′j = Axj , we have

AX =
[
Ax1 Ax2 · · · Axn

]
=
[
x′1 x′2 · · · x′n

]
=
[
x1 x2 · · · xn

]′
= X ′,

as desired.
(c) Done in class.

(d) eA+B(0) 6= eAeB(0), unless A and B(0) commute.
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Extra credit [5 pts]. Let A(t) be a n × n matrix valued function and f(t) a vector valued function.
Prove that the general solution of x′(t) = A(t)x(t) + f(t) is of the form x = xh + xp, where xh is a
linear combination of n linearly independent solutions of the associated homogeneous system, and xp is a
particular solution.

Solution. Let y be any solution of the system. Since by hypothesis xp is also a solution, the difference
y − xp satisfies

(y − xp)′ = Ay + f − (Axp + f) = A(y − xp),
i.e., y−xp satisfies the associated homogeneous equation. If x1, . . . , xn are n linearly independent solutions
of x′ = Ax, then y − xp can be written as a linear combination of x1, . . . , xn. Thus, there exist constants
c1, . . . , cn such that

y − xp = c1x1 + c2x2 + · · ·+ cnxn,

or

y = c1x1 + c2x2 + · · ·+ cnxn + xp,

as desired.



MATH 208 - TEST 2 13

(scrap paper)
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(scrap paper)
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(scrap paper)


