VANDERBILT UNIVERSITY
MATH 208 — ORDINARY DIFFERENTIAL EQUATIONS
PRACTICE TEST 2.

Question 1. Let

t sint 1 et
A_[cost 1 } andB_[sint 2]'

Compute AB, BA, 2 A, 4B, and %(AB).

» dih dt
Solution.
r ) t . t t :
AB — t+sm.t te +tZsmt  BA= t+e cos.t e +.sngt ‘
i cost+sint 2+ e‘cost 2cost+tsint 2+ sin“t
| cost ;. 0 ¢
A__—sint 0 , B = cost 0 |’
; [ 1+ 2costsint el +te! +2cost
(AB) = cost —sint etcost —elsint |-

Question 2. Give an example of two matrices such that AB # BA.
Solution. Take

Then

5 —13 —-10 —14
ap=[3 78] pan] 7 1]

Question 3. Let A(t) be a n x n matrix valued function and f(¢) a vector valued function. Prove that
the general solution of z'(t) = A(t)x(t) + f(t) is of the form « = z, + xp, where z;, is a linear combination
of n linearly independent solutions of the associated homogeneous system, and z,, is a particular solution.

Solution. Let y be any solution of the system. Since by hypothesis z, is also a solution, the difference
y — x, satisfies

(y—ap) = Ay+ f— (Azp + f) = A(y — zp),

i.e., y —x, satisfies the associated homogeneous equation. If x1, ..., x, are n linearly independent solutions
of 2/ = Az, then y — x;, can be written as a linear combination of z1,...,z,. Thus, there exist constants
ci,...,Cy such that

Y — Tp =C1T1 + C2x2 + -+ - + Cpp,
or
Yy =c1x1 + cax2 + -+ CpTy + Tp,

as desired.
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Question 4. Let A be a constant n x n matrix and let x1,...,x, be n linearly independent solutions of
' = Ax. Set

X:[xl To - mn}

Prove that X' = AX.

Solution. By the definition of multiplication of matrices, the j® column of AX is given by Az ;. But since
x; is a solution, i.e., x; = Ax;, we have

AX = [ Az Axzo Az, :|
!/
= [ Tr1 X2 T, ]
= )(’7
as desired. Notice that the assumption that x1,...,x, are linearly independent is not necessary.

Question 5. Let A be a real n X n symmetric matrix. Prove that all eigenvalues of A are real.
Solution. Let A be an eigenvalue with associated eigenvector x:

Az = \x. (1)
Take the complex conjugate of (1) to obtain

AT = \7, (2)

where ~ denotes the complex conjugate and we used that A = A since A is real. Multiply (1) on the left
by 1, (2) on the left by xT, where T denotes the transpose, and subtract to get

Tl Az — 2T AT = Mzl e — \a' 7. (3)
Write z = (21, ..., %,), denote the ij'" entry of A by a;;, and compute
D1 Q15T
n
D1 25T

TL Az = [T1To -~ T
D1 GnjTj

n n n
=7 E a1;%; + T2 g a2jTj + -+ Tn E Anj T
j=1 j=1 Jj=1
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n n
=71 § ai1T; + T2 E aio%; + -+ Ty g AinT;
i=1 =1
n
Ei:l a15
n
2oic1 @i
[T1 22 2]
n ' _
> i1 @inTi
=2TATz
= 2T Az,

where in the last step we used that AT = A since A is symmetric by assumption. Summarizing, 7! Az =
27 A%, and therefore the left hand side of (3) vanishes. Next, observe that

I
T2

7y = [Z1Zg - Ty

Tn

=T1x1 + ToT2 + - + TpTy

1
[z12 - 2] :C;Q
7
=27z
Therefore, (3) gives
A =Nzlz =0. (4)

Recall that for any complex number z, Zz is real an in fact Zz > 0, with equality if and only if z = 0. As

Tly = Ty +Toxo + - - -+ Tnty and z is not zero because it is an eigenvector, (4) implies A = A, as desired.

Question 6. Find a general solution of 2’ = Az for the given matrices A:
6 -3

@[5 7]

Solution. Eigenvalues: A\; = 4, Ao = 3. Eigenvectors (3,2), (1,1). Solutions: x1 = e*(3,2), x5 = €3(1,1).
3 2

w[%?]

Solution Eigenvalues A = 2+ 3i. Eigenvectors (—1 + 3i,5) = (—1,5) £ i(3,0). Solutions: z; =
et cos(3t)(—1,5) — €2 sin(3t)(3,0), 22 = e sin(3t)(—1,5) + 2t cos(3t)(3,0).

120 0
210 0
© g0 1 2
00 2 1
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Solution. Notice that is suffices to consider the matrix

2 1]

Eigenvalues: A\; = X2 = 3, \3 = Ay = —1. Eigenvectors (0,0,1,1), (1,1,0,0)
1,1

, (0,0,—1,1), (—1,1,0,0).
Solutions: 1 = €3(0,0,1,1), z2 = €3(1,1,0,0), x3 = e%(0,0,—1,1) e7{(—1,1,0,

(0,
0)

(d)

OO =
O~ =
N OO

Solution. Eigenvalues: A\; = 2, A = A3 = 1. Eigenvectors (0,0,1), and (1,0,0). Thus, there is only one
linearly independent eigenvector associated with the eigenvalue 1. Two linearly independent solutions are
r1 = €?%(0,0,1) and x5 = €!(1,0,0). Computing (A — 11)? we find
0 00
(A—1D)?=1]10 0 0
0 01
(

Two linearly independent solutions to (A — 1I)?u = 0 are (1,0, 0) and (0,1,0). We finally find
0

0
= | 1 |+€t]0
0

( d
0 0 0
zz=eM | 1| =e | 1| +et(A-11)] 1
0 0
1
0
0 0

Question 7. Find a general solution of ' = Az + f for the given A and f:

2 1 -1 t
(@ | -3 =1 1 |, ft)=]0
9 3 —4 1
Solution.
1 t —t + 3t? 241
z=cre | 0 | +coet| 1 | +ecge? t + | 7T—3t
3 3t 1—3t+ 3¢ 10
2 -2 3 et
(b) |0 3 2, ft)y=1] 2
0 -1 2 1
Solution.
1 VAR = [ =3V7

x=ce? | 0 +czegtcos— 2 —czegtsin— —2/7
0 2 1y 2 0
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11 -3V7 —3e i+ 13

5 Tt 5 Tt 3 16
+ cge2! sinL 2 | +cze2tcos— | =27 | + -1
2 1 2 0 8
8

Question 8. Show that in general it is not true that eAT? = e4ef, where A and B are n x n matrices.

Solution. Take

Then

X = e 0 oY — cosl —sinl SXHY 2 -1
0 et |’ sinl cosl |’ 1 0 |-

Indeed, notice that if

a=157)
then

=7 5
3

)

[ pd

A=
_nd

et

and so on. Thus

(o]
1 10 0 —0 1[ -6 0
A _ AN
N P I
1 0o & 1[6* 0 1[0 -
+31[—93 0]*4![0 94]+5![95 o | 7T
I R At
0— % +% - 1-4+5
| cosf —sinf
" | sinf® cos#

On the other hand,

1 -1
xev=|1 T,

and

(X+Y>2=[0 0],

which gives the result.
Note: If you are curious about a formula for e+ 5 google “Baker-Campbell-Hausdorff formula.”
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Question 9. Find e/t if

3 4
A=|0 5
0 0

QL =~ Ot

Solution. The eigenvalues are \; = 5 and Ay = A3 = 3. We readily find that (2,1,0) is an eigenvector
associated with A1, thus 1 = €(2,1,0) is a solution. For Ao = A3 = 3, one finds only one linearly
independent eigenvector, namely, (1,0,0), which gives x5 = €%(1,0,0). Next, we seek the generalized
eigenvectors. Computing,

0 8 16
(A-=30)?=1]0 4 8
00 0

Solving (A — 3I)%u = 0 yields us = (1,0,0) (which we already knew) and ug = (0,2,1). Therefore:
x3 = 3 (uz + t(A — 31)us) = e3(3t,2, —1).

A fundamental matrix is now given by

2e%t 3t 3tedt ]
X(t)=1| et 0 2%
0 0 —e |
From this we find
0o 1 2]
(XO) =1 -2 —4 |,
0 0 -1 ]
and thus
63t 265t _ 263t 4€5t _ (4 + 3t)€3t
eMt=Xt) (X0 t=1] o e 2e5t — 2¢3
0 0 e3t

Question 10. Let A be a square matrix and suppose that A is an eigenvalue of A.
(a) Show that e is an eigenvalue of e?.
(b) Show that if B is an invertible matrix, then B~leAB = ¢B™ 4B,

Solution. If Az = Az, x # 0, then A%z = A\x = A2z, A3z = AA%x = AN?x = A3z, and so on. Thus

o)

For part (b), notice that
(BAB™1)? = (BAB™Y)(BAB™!) = BA’B™!,
(BAB™1)? = (BAB™YY(BAB Y (BAB™') = BA*B™1,

(BAB™Y)" = (BAB™'Y(BAB™')...(BAB™!) = BA"B™ 1,
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from which the result immediately follows.

Question 11. Let F : R” — R" be given by F'(z) = |z|z, where |z| is the norm of x. What can you say
about the existence and uniqueness of solutions of

' =F(z)
z(0) =xz9

Solution. We shall prove that the system has a unique solution defined on some time interval (—¢,€), € > 0,
by showing that F' is Lipschitz in a neighborhood of xg.

|F(x) = F(y)| = | |z|z — |yly |
= [|z]z — [2|y + [=|y — [yly|
<[lz|lz — |zly |+ | |zly — lyly|
= [z[ |z —y[ + [|2| = [y[| [y]
< lzflz —y|+ |yl |z — yl,

where in the last step we used that | |z| — |y|| < |z — y|. Let K be a constant such that |zo| < K. Then,
for all ,y such that |z| < K and |y| < K, we have |F(z) — F(y)| < 2K|z — y|, and the result follows.

Question 12. Prove the several statements that were left as exercise in class. In other words, many of
the properties/statements studied in chapter 9 have not been proven in class, but rather I indicated that
I would leave them as an exercise; do those.

URL: http://www.disconzi.net/Teaching/MAT208-Fall-14/MAT208-Fall-14.html



