
VANDERBILT UNIVERSITY

MATH 208 — ORDINARY DIFFERENTIAL EQUATIONS

PRACTICE TEST 2.

Question 1. Let

A =

[
t sin t

cos t 1

]
and B =

[
1 et

sin t 2

]
.

Compute AB, BA, d
dtA, d

dtB, and d
dt(AB).

Solution.

AB =

[
t+ sin2 t tet + 2 sin t

cos t+ sin t 2 + et cos t

]
, BA =

[
t+ et cos t et + sin t

2 cos t+ t sin t 2 + sin2 t

]
.

A′ =

[
1 cos t

− sin t 0

]
, B′ =

[
0 et

cos t 0

]
,

(AB)′ =

[
1 + 2 cos t sin t et + tet + 2 cos t

cos t− sin t et cos t− et sin t

]
.

Question 2. Give an example of two matrices such that AB 6= BA.

Solution. Take

A =

[
1 2
3 4

]
and B =

[
−1 −3
3 −5

]
.

Then

AB =

[
5 −13
9 −29

]
, BA =

[
−10 −14
−12 −14

]
.

Question 3. Let A(t) be a n × n matrix valued function and f(t) a vector valued function. Prove that
the general solution of x′(t) = A(t)x(t) + f(t) is of the form x = xh + xp, where xh is a linear combination
of n linearly independent solutions of the associated homogeneous system, and xp is a particular solution.

Solution. Let y be any solution of the system. Since by hypothesis xp is also a solution, the difference
y − xp satisfies

(y − xp)′ = Ay + f − (Axp + f) = A(y − xp),

i.e., y−xp satisfies the associated homogeneous equation. If x1, . . . , xn are n linearly independent solutions
of x′ = Ax, then y − xp can be written as a linear combination of x1, . . . , xn. Thus, there exist constants
c1, . . . , cn such that

y − xp = c1x1 + c2x2 + · · ·+ cnxn,

or

y = c1x1 + c2x2 + · · ·+ cnxn + xp,

as desired.
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Question 4. Let A be a constant n× n matrix and let x1, . . . , xn be n linearly independent solutions of
x′ = Ax. Set

X =
[
x1 x2 · · · xn

]
.

Prove that X ′ = AX.

Solution. By the definition of multiplication of matrices, the jth column of AX is given by Axj . But since
xj is a solution, i.e., x′j = Axj , we have

AX =
[
Ax1 Ax2 · · · Axn

]
=
[
x′1 x′2 · · · x′n

]
=
[
x1 x2 · · · xn

]′
= X ′,

as desired. Notice that the assumption that x1, . . . , xn are linearly independent is not necessary.

Question 5. Let A be a real n× n symmetric matrix. Prove that all eigenvalues of A are real.

Solution. Let λ be an eigenvalue with associated eigenvector x:

Ax = λx. (1)

Take the complex conjugate of (1) to obtain

Ax = λx, (2)

where ¯ denotes the complex conjugate and we used that A = A since A is real. Multiply (1) on the left
by xT , (2) on the left by xT , where T denotes the transpose, and subtract to get

xTAx− xTAx = λxTx− λxTx. (3)

Write x = (x1, . . . , xn), denote the ijth entry of A by aij , and compute

xTAx = [x1 x2 · · ·xn]


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 anjxj


= x1

n∑
j=1

a1jxj + x2

n∑
j=1

a2jxj + · · ·+ xn

n∑
j=1

anjxj

=

n∑
i=1

xi

n∑
j=1

aijxj

=
n∑
i=1

n∑
j=1

aijxixj

=

n∑
j=1

n∑
i=1

aijxixj

=

n∑
j=1

xj

n∑
i=1

aijxi
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= x1

n∑
i=1

ai1xi + x2

n∑
i=1

ai2xi + · · ·+ xn

n∑
i=1

ainxi

= [x1 x2 · · ·xn]


∑n

i=1 ai1xi∑n
i=1 ai2xi

...∑n
i=1 ainxi


= xTATx

= xTAx,

where in the last step we used that AT = A since A is symmetric by assumption. Summarizing, xTAx =
xTAx, and therefore the left hand side of (3) vanishes. Next, observe that

xTx = [x1 x2 · · ·xn]


x1
x2
...
xn


= x1x1 + x2x2 + · · ·+ xnxn

= [x1 x2 · · ·xn]


x1
x2
...
xn


= xTx.

Therefore, (3) gives

(λ− λ)xTx = 0. (4)

Recall that for any complex number z, zz is real an in fact zz ≥ 0, with equality if and only if z = 0. As
xTx = x1x1 +x2x2 + · · ·+xnxn and x is not zero because it is an eigenvector, (4) implies λ = λ, as desired.

Question 6. Find a general solution of x′ = Ax for the given matrices A:

(a)

[
6 −3
2 1

]
.

Solution. Eigenvalues: λ1 = 4, λ2 = 3. Eigenvectors (3, 2), (1, 1). Solutions: x1 = e4t(3, 2), x2 = e3t(1, 1).

(b)

[
3 2
−5 1

]
.

Solution. Eigenvalues: λ = 2 ± 3i. Eigenvectors (−1 ± 3i, 5) = (−1, 5) ± i(3, 0). Solutions: x1 =
e2t cos(3t)(−1, 5)− e2t sin(3t)(3, 0), x2 = e2t sin(3t)(−1, 5) + e2t cos(3t)(3, 0).

(c)


1 2 0 0
2 1 0 0
0 0 1 2
0 0 2 1

 .
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Solution. Notice that is suffices to consider the matrix[
1 2
2 1

]
.

Eigenvalues: λ1 = λ2 = 3, λ3 = λ4 = −1. Eigenvectors (0, 0, 1, 1), (1, 1, 0, 0), (0, 0,−1, 1), (−1, 1, 0, 0).
Solutions: x1 = e3t(0, 0, 1, 1), x2 = e3t(1, 1, 0, 0), x3 = e−t(0, 0,−1, 1) e−t(−1, 1, 0, 0).

(d)

 1 1 0
0 1 0
0 0 2

 .
Solution. Eigenvalues: λ1 = 2, λ2 = λ3 = 1. Eigenvectors (0, 0, 1), and (1, 0, 0). Thus, there is only one
linearly independent eigenvector associated with the eigenvalue 1. Two linearly independent solutions are
x1 = e2t(0, 0, 1) and x2 = et(1, 0, 0). Computing (A− 1I)2 we find

(A− 1I)2 =

 0 0 0
0 0 0
0 0 1

 .
Two linearly independent solutions to (A− 1I)2u = 0 are (1, 0, 0) and (0, 1, 0). We finally find

x3 = eAt

 0
1
0

 = et

 0
1
0

+ ett(A− 1I)

 0
1
0


= et

 0
1
0

+ ett

 0 1 0
0 0 0
0 0 2

 0
1
0

 = et

 t
1
0

 .
Question 7. Find a general solution of x′ = Ax+ f for the given A and f :

(a)

 2 1 −1
−3 −1 1
9 3 −4

 , f(t) =

 t
0
1

 .
Solution.

x =c1e
−t

 1
0
3

+ c2e
−t

 t
1
3t

+ c3e
−t

 −t+ 1
2 t

2

t
1− 3t+ 3

2 t
2

+

 2 + t
7− 3t

10

 .

(b)

 2 −2 3
0 3 2
0 −1 2

 , f(t) =

 e−t

2
1

 .
Solution.

x =c1e
2t

 1
0
0

+ c2e
5
2
t cos

√
7t

2

 11
2
4

− c2e 5
2
t sin

√
7t

2

 −3
√

7

−2
√

7
0


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+ c3e
5
2
t sin

√
7t

2

 11
2
4

+ c3e
5
2
t cos

√
7t

2

 −3
√

7

−2
√

7
0

+

 −1
3e
−t + 11

16
−1

4
−5

8

 .
Question 8. Show that in general it is not true that eA+B = eAeB, where A and B are n× n matrices.

Solution. Take

X =

[
1 0
0 −1

]
, Y =

[
0 −1
1 0

]
.

Then

eX =

[
e 0
0 e−1

]
, eY =

[
cos 1 − sin 1
sin 1 cos 1

]
, eX+Y =

[
2 −1
1 0

]
.

Indeed, notice that if

A =

[
0 −θ
θ 0

]
,

then

A2 =

[
−θ2 0

0 −θ2
]
,

A3 =

[
0 θ3

−θ3 0

]
,

A4 =

[
θ4 0
0 θ4

]
,

A5 =

[
0 −θ5
θ5 0

]
,

and so on. Thus

eA =
∞∑
n=0

1

n!
An =

[
1 0
0 1

]
+

[
0 −θ
θ 0

]
+

1

2!

[
−θ2 0

0 −θ2
]

+
1

3!

[
0 θ3

−θ3 0

]
+

1

4!

[
θ4 0
0 θ4

]
+

1

5!

[
0 −θ5
θ5 0

]
+ · · ·

=

[
1− θ2

2! + θ4

4! − · · · −θ + θ3

3! −
θ5

5! + · · ·
θ − θ3

3! + θ5

5! − · · · 1− θ2

2! + θ4

4! − · · ·

]

=

[
cos θ − sin θ
sin θ cos θ

]
.

On the other hand,

X + Y =

[
1 −1
1 −1

]
,

and

(X + Y )2 =

[
0 0
0 0

]
,

which gives the result.
Note: If you are curious about a formula for eA+B, google “Baker-Campbell-Hausdorff formula.”
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Question 9. Find eAt if

A =

 3 4 5
0 5 4
0 0 3

 .
Solution. The eigenvalues are λ1 = 5 and λ2 = λ3 = 3. We readily find that (2, 1, 0) is an eigenvector
associated with λ1, thus x1 = e5t(2, 1, 0) is a solution. For λ2 = λ3 = 3, one finds only one linearly
independent eigenvector, namely, (1, 0, 0), which gives x2 = e3t(1, 0, 0). Next, we seek the generalized
eigenvectors. Computing,

(A− 3I)2 =

 0 8 16
0 4 8
0 0 0

 .
Solving (A− 3I)2u = 0 yields u2 = (1, 0, 0) (which we already knew) and u3 = (0, 2, 1). Therefore:

x3 = e3t(u3 + t(A− 3I)u3) = e3t(3t, 2,−1).

A fundamental matrix is now given by

X(t) =

 2e5t e3t 3te3t

e5t 0 2e3t

0 0 −e3t

 .
From this we find

(X(0))−1 =

 0 1 2
1 −2 −4
0 0 −1

 ,
and thus

eAt = X(t)(X(0))−1 =

 e3t 2e5t − 2e3t 4e5t − (4 + 3t)e3t

0 e5t 2e5t − 2e3t

0 0 e3t

 .
Question 10. Let A be a square matrix and suppose that λ is an eigenvalue of A.

(a) Show that eλ is an eigenvalue of eA.

(b) Show that if B is an invertible matrix, then B−1eAB = eB
−1AB.

Solution. If Ax = λx, x 6= 0, then A2x = Aλx = λ2x, A3x = AA2x = Aλ2x = λ3x, and so on. Thus

eAx =

∞∑
n=0

An

n!
x

=
∞∑
n=0

λn

n!
x

= eλx.

For part (b), notice that

(BAB−1)2 = (BAB−1)(BAB−1) = BA2B−1,

(BAB−1)3 = (BAB−1)(BAB−1)(BAB−1) = BA3B−1,

...

(BAB−1)n = (BAB−1)(BAB−1) · · · (BAB−1) = BAnB−1,
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from which the result immediately follows.

Question 11. Let F : Rn → Rn be given by F (x) = |x|x, where |x| is the norm of x. What can you say
about the existence and uniqueness of solutions of{

x′ = F (x)

x(0) = x0
?

Solution. We shall prove that the system has a unique solution defined on some time interval (−ε, ε), ε > 0,
by showing that F is Lipschitz in a neighborhood of x0.

|F (x)− F (y)| = | |x|x− |y|y |
= | |x|x− |x|y + |x|y − |y|y |
≤ | |x|x− |x|y |+ | |x|y − |y|y |
= |x| |x− y|+ ||x| − |y|| |y|
≤ |x| |x− y|+ |y| |x− y|,

where in the last step we used that | |x| − |y| | ≤ |x− y|. Let K be a constant such that |x0| < K. Then,
for all x, y such that |x| ≤ K and |y| ≤ K, we have |F (x)− F (y)| ≤ 2K|x− y|, and the result follows.

Question 12. Prove the several statements that were left as exercise in class. In other words, many of
the properties/statements studied in chapter 9 have not been proven in class, but rather I indicated that
I would leave them as an exercise; do those.

URL: http://www.disconzi.net/Teaching/MAT208-Fall-14/MAT208-Fall-14.html


