VANDERBILT UNIVERSITY MATH 198 — METHODS OF ORDINARY DIFFERENTIAL EQUATIONS. PRACTICE MIDTERM II.

The Laplace transform.

The table below indicates the Laplace transform F(s) of the given function f(t).

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\cos(kt)$	$\frac{s}{s^2+k^2}$
$\sin(kt)$	$\frac{k}{s^2+k^2}$
$e^{at}\cos(kt)$	$\frac{s-a}{(s-a)^2+k^2}$
$e^{at}\sin(kt)$	$\frac{k}{(s-a)^2+k^2}$

The following are the main properties of the Laplace transform.

Function	Laplace transform
af(t) + bg(t)	aF(s) + bG(s)
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$e^{at}f(t)$	F(s-a)
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
(f * g)(t)	F(s)G(s)
u(t-a)	$\frac{e^{-as}}{s}$

Above, f * g is the convolution of f and g, given by

$$(f * g)(t) = \int_0^t f(t - \tau)g(\tau) \, d\tau,$$

and u(t-a) is given by

$$u(t-a) = \begin{cases} 0, & t < a, \\ 1, & t > a. \end{cases}$$

Question 1. Recall that a function f is said to be of exponential order α if there exist positive constants T and M such that

 $|f(t)| \le M e^{\alpha t}$, for all $t \ge T$.

Which of the following functions are of exponential order? (a) t^2 .

(b) e^{-t^6} .

(c)
$$\frac{1}{\sqrt{t}+t^2}$$
.

Question 2. Determine the Laplace transform of the given functions

(a) $\cos(nt)\cos(mt), n \neq m$.

(b) $t \sin(2t) \sin(5t)$.

Question 3. Determine $\mathscr{L}^{-1}{F}$.

(a)
$$F(s) = \frac{3s+2}{s^2+2s+10}$$
.

(b)
$$sF(s) + F(s) = \frac{3s^2 + 5s + 3}{s^3}$$
.

Question 4. Solve the given initial value problem using the method of Laplace transforms.

(a)
$$\begin{cases} y'' - y' - 2y = 0, \\ y(0) = -2, \ y'(0) = 5. \end{cases}$$

(b)
$$\begin{cases} y'' - 2y' + y = 6t - 2, \\ y(-1) = 3, \ y'(-1) = 7. \end{cases}$$

Question 5. Use convolution to obtain a formula for the solution to the given initial value problem, where g is piece-wise continuous on $[0, \infty)$ and of exponential order.

$$\begin{cases} y'' + y = g(t), \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Question 6. Solve the given or integro-differential equation for y(t).

$$y'(t) - 2 \int_0^t e^{t-\tau} y(\tau) \, d\tau = t,$$

$$y(0) = 2.$$

Question 7. Solve the given symbolic initial value problem.

$$\begin{cases} y'' + y = -\delta(t - \pi) + \delta(t - 2\pi), \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Question 8. Determine the radius of convergence of the given power series.

(a)
$$\sum_{n=0}^{\infty} \frac{7n}{n^3 + 1} (x - 4)^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{n^2}{n!} (x+1)^n$$

MATH 198 - MIDTERM

Question 9. Review the more theoretical aspects of Laplace transform, such as, but not restricted to: when the Laplace transform exists, how to prove its properties, Laplace transform of discontinuous functions and the delta function, etc.

10