VANDERBILT UNIVERSITY MATH 198 — METHODS OF ORDINARY DIFFERENTIAL EQUATIONS. PRACTICE FINAL.

The Laplace transform.

The table below indicates the Laplace transform F(s) of the given function f(t).

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\cos(kt)$	$\frac{s}{s^2+k^2}$
$\sin(kt)$	$\frac{k}{s^2+k^2}$
$e^{at}\cos(kt)$	$\frac{s-a}{(s-a)^2+k^2}$
$e^{at}\sin(kt)$	$\frac{k}{(s-a)^2+k^2}$

The following are the main properties of the Laplace transform.

Function	Laplace transform
af(t) + bg(t)	aF(s) + bG(s)
f'(t)	sF(s) - f(0)
f''(t)	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$e^{at}f(t)$	F(s-a)
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
(f * g)(t)	F(s)G(s)
u(t-a)	$\frac{e^{-as}}{s}$

Above, f * g is the convolution of f and g, given by

$$(f*g)(t) = \int_0^t f(t-\tau)g(\tau) \, d\tau,$$

and u(t-a) is given by

$$u(t-a) = \begin{cases} 0, & t < a, \\ 1, & t > a. \end{cases}$$

Question 1. Find the general solution of the the differential equations below.

(a)
$$y' + \frac{2xy - 3x^2}{x^2 - 2y^{-3}} = 0.$$

(b)
$$\frac{dy}{dx} = 2 - \sqrt{2x - y + 3}.$$

(c) $y' - 4y = 32x^2$.

(d)
$$y' = \frac{x}{y} + \frac{y}{x}$$
.

(e) y'' - 5y' + 6y = 0.

(f)
$$y' + \frac{y}{x} = -\frac{4x}{y^2}.$$

Question 2. Solve the following initial value problems. (a) $y'' + 9y = 10e^{2t}$, y(0) = -1, y'(0) = 5.

(b) y'' + 3y' + 4y = u(t-1), y(0) = 0, y'(0) = 1.

(c)
$$y(t) + \int_0^t y(\tau)(t-\tau) d\tau = e^{-3t}.$$

Question 3. Using power series, find the general solution to the differential equations below (your solution should include the general form of the coefficients a_n).

(a) $(1 - x^2)y'' + xy' + 3y = 0.$

(b) $(x^2 - 2)y'' + 3y = 0.$

Question 4. Find a power series solution to the differential equations below about the given point (your solution should include the general form of the coefficients a_n).

(a) $4x^2y'' + 2x^2y' - (x+3)y = 0, x > 0$, about x = 0.

(b) xy'' + (x-1)y' - 2y = 0, x > 0, about x = 0.

Question 5. Find at least the first three nonzero terms in the series expansion about x = 0 for a general solution of

$$xy'' - y' - xy = 0, \ x > 0.$$

Question 6. Find the general solution of the system

$$x' = Ax$$

for the given matrices A.

(a)
$$A = \begin{bmatrix} -4 & 2\\ 2 & -1 \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

Question 7. Let $F(s) = \mathscr{L}{f}(s)$ exist for $s > \alpha, \alpha \ge 0$. Show that if a > 0, then $\mathscr{L}^{-1}{e^{-as}} = f(t-a)u(t-a).$