VANDERBILT UNIVERSITY.

MATH 196.

Summary of Homogeneous Second Order Linear ODEs with constant coefficients.

A second order homogeneous linear differential equation with constant coefficients is of the form

$$
\begin{equation*}
A y^{\prime \prime}+B y^{\prime}+C y=0, \tag{1}
\end{equation*}
$$

where A, B, and C are constants. We can assume $A \neq 0$, otherwise this would be a first order equation (which we have already learned how to solve). Dividing the equation by A gives

$$
\begin{equation*}
y^{\prime \prime}+b y^{\prime}+c y=0, \tag{2}
\end{equation*}
$$

Remark 1. All formulas here provided assume that the differential equation is written as in (2), i.e., with the coefficient of $y^{\prime \prime}$ equal to one. If you are giving an equation where the coefficient of $y^{\prime \prime}$ is not equal to one, as in (1), you have first to divide the equation by that same coefficient to write it as in (2).

From (2), write the characteristic equation:

$$
\lambda^{2}+b \lambda+c=0,
$$

whose roots are given by

$$
\begin{aligned}
& \lambda_{1}=\frac{-b+\sqrt{b^{2}-4 c}}{2} \\
& \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 c}}{2}
\end{aligned}
$$

There are three possible cases.
CASE 1: λ_{1} and λ_{2} are real and distinct.
In this case, the functions $y_{1}=e^{\lambda_{1} x}$ and $y_{2}=e^{\lambda_{2} x}$ are two linearly independent solutions of the differential equation (2), and the general solution is

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} .
$$

CASE 2: λ_{1} and λ_{2} are real and equal.
Write $\lambda_{1}=\lambda_{2}=\lambda$. In this case, the functions $y_{1}=e^{\lambda x}$ and $y_{2}=x e^{\lambda x}$ are two linearly independent solutions of the differential equation (2), and the general solution is

$$
y=c_{1} e^{\lambda x}+c_{2} x e^{\lambda x} .
$$

CASE 3: λ_{1} and λ_{2} are complex imaginary solutions.
In this case, write $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$, where α and β are real numbers. The functions $y_{1}=e^{\alpha x} \cos (\beta x)$ and $y_{2}=e^{\alpha x} \sin (\beta x)$ are two linearly independent solutions of the differential equation (2), and the general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x) .
$$

