VANDERBILT UNIVERSITY MATH 196 — PRACTICE TEST 1

Question 1. Classify the differential equations below as linear or non-linear and state their order. (a) $y' + y^2 = 0$

(a) y' + y' = 0(b) $\frac{d^2x}{dt^2} + 25x = \cos(t)$ (c) $yy'' = \sqrt{y}$ (d) $e^{\sin x^2} \frac{dy}{dx} + xy = e^{-x}$ (e) $e^{\cos x^4} \frac{dy}{dx}y = e^{-x}$

Question 2. The acceleration of an object moving in a straight line is proportional to the logarithm of the time elapsed since its departure. Find an equation for its position after time t. Is this a well defined problem?

Question 3. A 300 ℓ tank initially contains 10 kg of salt dissolved in 100 ℓ of water. Brine containing $2 kg/\ell$ of salt flows into the tank at the rate $4 \ell/\min$, and the well-stirred mixture flows out of the tank at the rate $2 \ell/\min$. How much salt does the tank contain when 80% of its capacity is full?

Question 4. Solve the following differential equations:

(a) $y' = -\frac{2xy^3 + e^x}{3x^2y^2 + \sin y}$ (b) $-x^2y' + xy^2 + 3y^2 = 0$ (c) $x^2y' = xy + y^2$ (d) $x^3 + 3y - xy' = 0$. (e) $y' = x^2 - 2xy + y^2$

Question 5. Consider the differential equation:

$$y'' + p(x)y' + q(x)y = 0,$$

and suppose that y_1 and y_2 are two solutions. Let c_1 and c_2 be two arbitrary constants. Show that $y = c_1y_1 + c_2y_2$ solves the equation.

Question 6. Solve the linear systems below, when possible.

(a)

$$\begin{cases} 3x + 5y - z = 13\\ 2x + 7y + z = 28\\ x + 7y + 2z = 32 \end{cases}$$

(b)

$$\begin{cases} 2x + 3y + 7z = 15\\ x + 4y + z = 20\\ x + 2y + 3z = 10 \end{cases}$$

(c)

 $\mathbf{2}$

ſ	x	—	3y	+	2z	=	6
ł	x	+	4y	_	z	=	4
l	5x	+	6y	+	z	=	20

Question 7. Let

$$A = \left[\begin{array}{cc} 2 & 1 \\ 4 & 3 \end{array} \right]$$

and

$$B = \left[\begin{array}{rrr} -1 & 0 & 4 \\ 3 & -2 & 5 \end{array} \right].$$

Calculate whichever of the matrices AB and BA is defined.

Question 8. Let

$$A = \begin{bmatrix} 2 & 0 & 0 & -3 \\ 0 & 1 & 11 & 12 \\ 0 & 0 & 5 & 13 \\ -4 & 0 & 0 & 7 \end{bmatrix}$$

What can you say about A^{-1} ?

URL: http://www.disconzi.net/Teaching/MAT196-Spring-15/MAT196-Spring-15.html