VANDERBILT UNIVERSITY MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA PRACTICE FINAL EXAM.

FORMULAS — These will be given in the final exam.

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\cos(kt)$	$\frac{s}{s^2+k^2}$
$\sin(kt)$	$rac{k}{s^2+k^2}$
$e^{at}\cos(kt)$	$\frac{s-a}{(s-a)^2+k^2}$
$e^{at}\sin(kt)$	$rac{k}{(s-a)^2+k^2}$

The table below indicates the Laplace transform F(s) of the given function f(t).

The following are the main properties of the Laplace transform.

af(t) + bg(t)	aF(s) + bG(s)
f'(t)	sF(s) - f(0)
f''	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$

The particular solution of

$$y'' + p(t)y' + q(t)y = f(t)$$

is

$$y_p(t) = -y_1(t) \int \frac{y_2(t)f(t)}{W(t)} dt + y_2(t) \int \frac{y_1(t)f(t)}{W(t)} dt,$$

where $y_1(t)$ and $y_2(t)$ are linearly independent solutions of the associated homogeneous problem and W(t) is the Wronskian of $y_1(t)$ and $y_2(t)$.

Question 1. Consider the matrices

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 5 \\ 3 & 2 & 4 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 6 \\ 3 & 9 \end{bmatrix}.$$

Their reduced row echelon forms, denoted $\operatorname{rref}(A)$ and $\operatorname{rref}(B)$, respectively, are

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & -1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \operatorname{rref}(B) = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}.$$

(a) Find Ker(A) and Ker(B) (i.e, the kernels of A and B).

(b) Find basis for $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$ (i.e., basis for the space of columns of A and B, respectively).

(c) Find basis for Row(A) and Row(B)

Question 2. Let

$$A = \begin{bmatrix} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$
$$B = \begin{bmatrix} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Find the general solution of the systems of differential equations: (a)

$$x' = Ax.$$
 (b)

$$x' = Bx.$$

(c)

$$x' = Cx.$$

Question 3. Find the general solution of the differential equations below. In the cases involving a particular solution, you do not have to find the specific values of the constants.

(a)

- (b) $(1+x^2)y' + 3xy - 6x = 0.$ $2xyy' - 3y^2 = 4x^2.$
- (c)

$$y'''' - 2y'' + y = e^x + 1 + x^2 \cos x.$$

(d)

$$y''' + 9y' = x\sin x + x^2 e^{2x}.$$

Question 4. Consider the system of two blocks and three springs shown in the figure below. Notice that the outermost endpoints of springs one and three are attached to walls. Write a system of differential equations that models the dynamics of system (disregard friction).

FIGURE 1. Mass-spring system of question 4.

Question 5. Use Laplace transforms to solve the initial value problems below. (a)

$$\begin{cases} x'' - 6x' + 8x = 2, \\ x(0) = x'(0) = 0. \end{cases}$$

(b)

$$\begin{cases} x'' - 4x = 3t, \\ x(0) = x'(0) = 0. \end{cases}$$

Question 6. Let A be an $n \times n$ matrix with real entries. Recall that the transpose of A, denoted A^T , is the matrix obtained from A by the rule:

If the i, j^{th} entries of A are denoted by a_{ij} , then the i, j^{th} entries of A^T are given by a_{ji} . In other words, A^T is obtained by "switching the rows and columns of A".

Prove that the $\operatorname{Col}(A)$ is orthogonal to $\operatorname{Ker}(A^T)$.

Question 7. True or false? Justify your answer.

(a) Let A be a $n \times n$ matrix with real entries, and suppose all its eigenvalues are complex. Because for each eigenvalue λ there are two linearly independent real solutions, we can conclude that there exist 2n linearly independent solutions of x' = Ax.

(b) If a square matrix A has an eigenvalue λ of multiplicity m, where m > 1, then in order to solve x' = Ax we must find vectors that are generalized eigenvectors of A but that are not eigenvectors of A.

(c) Any differential equation of order n is can be written as a $n \times n$ system of first order differential equations.

(d) A $n \times n$ matrix that has n distinct real eigenvalues necessarily has n linearly independent eigenvectors.

Question 8. State the following definitions.

- (a) Eigenvalue.
- (b) Eigenvector.
- (c) Generalized eigenvector.
- (d) Defective eigenvalue.