VANDERBILT UNIVERSITY MATH 196 - DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA MOTIVATION FOR VECTOR SPACES.

Source: I got this example from http://www.mtholyoke.edu/~jjlee/Teaching/notes5.pdf
Motivation. Let S be the set of all solutions to the differential equation $y^{\prime \prime}+y=0$. Let T be the set of all 2×3 matrices with real entries. These two sets share many common properties:

$S=$ the set of all solutions to $y^{\prime \prime}+y=0$	$T=$ the set of all 2×3 matrices
The sum of two solutions $y_{1}(x)=\sin x$ and $y_{2}(x)=\cos x$ to the differential equation, say $y_{3}(x)=\sin x+\cos x$, is also a solution to the equation.	$\left[\begin{array}{rrr}1 & 2 & 3 \\ -2 & 3 & 4\end{array}\right]$ and $\left[\begin{array}{rrr}0 & 0 & 2 \\ 1 & 3 & -2\end{array}\right]$ are in T and so is their sum $\left[\begin{array}{rrr}1 & 2 & 5 \\ -1 & 6 & 2\end{array}\right]$.
The zero function is a solution to the equation.	The zero matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is in T.
$y_{1}(x)=\sin x$ is a solution to the equation and so is any constant multiple $y_{c}(x)=c \sin x$. In particular $-y_{1}(x)=-\sin x$ is also a solution.	$\left[\begin{array}{rrr}1 & 2 & 3 \\ -2 & 3 & 4\end{array}\right]$ is in T and so is $c\left[\begin{array}{rrr}1 & 2 & 3 \\ -2 & 3 & 4\end{array}\right]=\left[\begin{array}{rrr}c & 2 c & 3 c \\ -2 c & 3 c & 4 c\end{array}\right]$ for every constant c. In particular $-\left[\begin{array}{rrr}1 & 2 & 3 \\ -2 & 3 & 4\end{array}\right]=\left[\begin{array}{rrr}-1 & -2 & -3 \\ 2 & -3 & -4\end{array}\right]$ is in T.

Even though the sets S and T are totally different objects, they resemble each other. Due to such similarities, it is useful to study both sets S and T from the same point of view, i.e., with the same tools and techniques. What S and T have in common is that both are vector spaces, whose definition we now recall.

A vector space is a nonempty set V of elements, called vectors, together with two operations + and \cdot, called addition and scalar multiplication, such that if $\boldsymbol{u}, \boldsymbol{v} \in V$, then $\boldsymbol{u}+\boldsymbol{v} \in V$, and if $\alpha \in \mathbb{R}, \boldsymbol{u} \in V$, then $\alpha \cdot \boldsymbol{u} \in V$. Furthermore, the following conditions are required to hold (below we write the scalar multiplication simply as $\alpha \boldsymbol{u}$ rather than $\alpha \cdot \boldsymbol{u}$ for simplicity): for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and $\alpha, \beta \in \mathbb{R}$,

1. $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
2. $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$.
3. There is a special element \boldsymbol{O} in V such that $\boldsymbol{u}+\boldsymbol{0}=\boldsymbol{0}+\boldsymbol{u}=\boldsymbol{u}$ for all \boldsymbol{u} in V.
4. $\boldsymbol{u}+(-\boldsymbol{u})=(-\boldsymbol{u})+\boldsymbol{u}=\boldsymbol{0}$, where $-\boldsymbol{u}=(-1) \boldsymbol{u}$.
5. $\alpha(\boldsymbol{u}+\boldsymbol{v})=\alpha \boldsymbol{u}+\alpha \boldsymbol{v}$.
6. $(\alpha+\beta) \boldsymbol{u}=\alpha \boldsymbol{u}+\beta \boldsymbol{u}$.
7. $\alpha(\beta \boldsymbol{u})=(\alpha \beta) \boldsymbol{u}$.
8. $1 \boldsymbol{u}=\boldsymbol{u}$.
