
VANDERBILT UNIVERSITY

MATH 196 — EXAMPLES OF SECTIONS 5.5

Question 1. Write the form of the particular solution for the equations below (you do not have to find
the values of the constants).

(a) y′′ + 9y = 2 cos(3x) + 3 sin(3x).

(b) y′′′ + y′ = 2− sinx.

(c) y(4) − 2y′′ + y = xex.

(d) y′′ + 9y = 2x2e3x + 5.

Question 2. In the questions below, two linearly independent solutions of the associated homogeneous
equation are given. Find the particular solution yp.

(a) x2y′′ − 4xy′ + 6y = x3, y1 = x2, y2 = x3.

(b) (x2 − 1)y′′ − 2xy′ + 2y = x2 − 1, y1 = x, y2 = 1 + x2.

Question 3. Show that the formula given in class for yp in fact produces a particular solution.

SOLUTIONS.

1a. The homogeneous equation is

y′′ + 9y = 0,

with characteristic equation

λ2 + 9 = 0,

whose roots are ±3i. Hence

y1 = cos(3x), y2 = sin(3x),

are solutions of the homogeneous equation. Given the form of f(x), we look for

yp = xs
(
A cos(3x) +B sin(3x)

)
.

Since cos(3x) and sin(3x) are solutions of the homogeneous equation, we need s = 1, so

yp = x
(
A cos(3x) +B sin(3x)

)
.

1b. The homogeneous equation is

y′′′ + y′ = 0,

with characteristic equation

λ3 + λ = 0,

whose roots are λ = 0 and λ = ±i. Hence

y1 = 1, y2 = cos(x), y3 = sin(x),

are solutions of the homogeneous equation. Given the form of f(x), we look for

yp = xsA+ xr
(
B cos(x) + C sin(x)

)
,

where A corresponds to 2 and B cos(x)+C sin(x) to sin(x). If s = 0 then A =constant repeats the solution
y1, while if r = 0 then cos(x) and sin(x) repeat y2 and y3. Hence we set s = 1 and r = 1:

yp = Ax+ x
(
B cos(3x) + C sin(x)

)
.
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1c. The homogeneous equation is

y(4) − 2y′′ + y = 0,

with characteristic equation

λ4 − 2λ2 + 1 = 0,

whose roots are ±1, each repeated twice. Hence

y1 = e−x, y2 = xe−x, y3 = ex, y4 = xex,

are solutions of the homogeneous equation. Given the form of f(x), we look for

yp = xs
(
Ax+B

)
ex.

Since ex and xex are solutions of the homogeneous equation, we need s = 2, so

yp = x2
(
Ax+B

)
ex.

1d. The homogeneous equation is

y′′ + 9y = 0,

with characteristic equation

λ2 + 9 = 0,

whose roots are ±3i. Hence

y1 = cos(3x), y2 = sin(3x),

are solutions of the homogeneous equation. Given the form of f(x), we look for

yp = xsA+ xr
(
Bx2 + Cx+D

)
e3x.

Since there is no repetition with the solutions of the homogeneous equation, r = s = 0 and

yp = A+
(
Bx2 + Cx+D

)
e3x.

For question 2, recall that the formula for yp is

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y2(x)f(x)

W (x)
dx.

But it is very important to also remember that this formula is for an equation written with the coefficient
of y′′ being one. If this is not the case we have to first divide the equation by the coefficient of y′′.

2a. Rewrite the equation as

y′′ − 4

x
y′ +

6

x2
y = x,

so that f(x) = x. Compute

W (x) = y1y
′
2 − y2y′1 = x2(3x2)− x3(2x) = x4.

Plugging all quantities into the formula for yp and performing the integrals we find

yp = x3(lnx− 1).

2b. Rewrite the equation as

y′′ − 2x

x2 − 1
y′ +

2

x2 − 1
y = 1
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so that f(x) = 1. Compute

W (x) = y1y
′
2 − y2y′1 = x(2x)− (1 + x2)1 = x2 − 1.

Plugging all quantities into the formula for yp and performing the integrals we find

yp = −x2 + x ln

∣∣∣∣1 + x

1− x

∣∣∣∣+
1

2
(1 + x2) ln |1− x2|.

3. We want to show that

yp(x) = −y1(x)

∫
y2(x)f(x)

W (x)
dx+ y2(x)

∫
y2(x)f(x)

W (x)
dx.

solves

y′′ + py′ + qy = f,

where p, q and f are not necessarily constants and y1 and y2 are solutions of the associated homogeneous
equation, i.e., they solve

y′′ + py′ + qy = 0.

We have to plug yp into the equation. Since we shall differentiate yp, it is useful to remember the Funda-
mental Theorem of Calculus, which gives(∫ y2(x)f(x)

W (x)
dx
)′

=
y2(x)f(x)

W (x)
,

and (∫ y2(x)f(x)

W (x)
dx
)′

=
y2(x)f(x)

W (x)
.

Using these formulas and the product rule we find

y′p = −y′1
∫
y2f

W
− y1

y2f

W
+ y′2

∫
y1f

W
+ y2

y1f

W
,

where we write
∫ y2f

W instead of
∫ y2(x)f(x)

W (x) dx in order to simplify the notation (analogously for the other

integral). Taking another derivative

y′′p = −y′′1
∫
y2f

W
− 2y′1

y2f

W
− y1

(
y2f

W

)′
+ y′′2

∫
y1f

W
+ 2y′2

y1f

W
+ y2

(
y1f

W

)′
.

Using yp, y
′
p and y′′p into the equation we find

y′′p + py′p + qyp = −
(
y′′1 + py′1 + qy1

) ∫ y2f

W
+
(
y′′2 + py′2 + qy2

) ∫ y2f

W

− y2f

W

(
py1 + 2y′1

)
+
y1f

W

(
py2 + 2y′2

)
− y1

(
y2f

W

)′
+ y2

(
y1f

W

)′
.

Since by hypothesis y1 and y2 are solutions of the homogeneous equation,

y′′1 + py′1 + qy1 = 0,

and

y′′2 + py′2 + qy2 = 0,

so

y′′p + py′p + qyp = −y2f
W

(
py1 + 2y′1

)
+
y1f

W

(
py2 + 2y′2

)
− y1

(
y2f

W

)′
+ y2

(
y1f

W

)′
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By the product rule (
y2f

W

)′
= y′2

f

W
+ y2f

′ 1

W
+ y2f

(
1

W

)′
,

and (
y1f

W

)′
= y′1

f

W
+ y1f

′ 1

W
+ y1f

(
1

W

)′
.

Therefore

y′′p + py′p + qyp =− y2f

W

(
py1 + 2y′1

)
+
y1f

W

(
py2 + 2y′2

)
− y1y′2

f

W
− y1y2f ′

1

W
− y1y2f

(
1

W

)′
+ y2y

′
1

f

W
+ y2y1f

′ 1

W
+ y2y1f

(
1

W

)′
.

Notice that the last two terms of the second line cancel with the last two terms of the third line. We are
left with

y′′p + py′p + qyp = −y2f
W

(
py1 + 2y′1

)
+
y1f

W

(
py2 + 2y′2

)
− y1y′2

f

W
+ y2y

′
1

f

W

= −py2f
W

y1 − 2
y2f

W
y′1 + p

y1f

W
y2 + 2

y1f

W
y′2 − y1y′2

f

W
+ y2y

′
1

f

W
.

The first and third terms on the last line cancel out, and then

y′′p + py′p + qyp = −2
y2f

W
y′1 + 2

y1f

W
y′2 − y1y′2

f

W
+ y2y

′
1

f

W

= −2
f

W
y2y
′
1 + 2

f

W
y1y
′
2 − y1y′2

f

W
+ y2y

′
1

f

W

=
f

W
y1y
′
2 −

f

W
y2y
′
1 =

f

W

(
y1y
′
2 − y2y′1

)
= f,

where in the last step we used that W = y1y
′
2 − y2y′1.
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