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MATH 196 — EXAMPLES OF SECTIONS 4.3 AND 4.4

Question 1. Verify whether the given vectors ~u = (7, 3,−1, 9), ~v = (−2,−2, 1, 3) are linearly independent.
If possible, express ~w = (4,−4, 3, 3) as a linear combination of ~u and ~v.

Question 2. Verify whether the given vectors ~u = (1, 0, 0, 3), ~v = (0, 1,−2, 0), ~w = (0,−1, 1, 1) are linearly
independent. If possible, express ~z = (2,−3, 2,−3) as a linear combination of ~u, ~v and ~w.

Question 3. Find a basis for the solution space of the linear system:

 x1 − 4x2 − 3x3 − 7x4 = 0
2x1 − x2 + x3 + 7x4 = 0
x1 + 2x2 + 3x3 + 11x4 = 0

SOLUTIONS.

1. Consider the matrix

A = [ ~u ~v ] =


7 −2
3 −2
−1 1

9 −3

 .

Its submatrix [
7 −2
3 −2

]
has determinant equal to (−2) × 7 − (−2) × 3 = −14 + 6 = −8 6= 0, hence the vectors are linearly
independent.

Consider now the system

c1~u + c2~v = ~w,

or, in matrix form, 
7 −2
3 −2
−1 1

9 −3

[ c1
c2

]
=


4
−4

3
3

 .

The augmented matrix of the system is 
7 −2

... −4

3 −2
... −4

−1 1
... 3

9 −3
... 3

 .

1
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Applying Gauss-Jordan elimination we find 
1 0

... 2

0 1
... 5

0 0
... 0

0 0
... 0

 .

This means that the system has solution c1 = 2 and c2 = 5, therefore

~w = 2~u + 5~v.

2. Consider the matrix

A = [ ~u ~v ~w ] =


1 0 0
0 1 −1
0 −2 1
3 0 1

 .

Its submatrix  1 0 0
0 1 −1
0 −2 1

 .

has determinant equal to 1 × (1 × 1 − (−1) × (−2)) = 1 − 2 = −1 6= 0, hence the vectors are linearly
independent.

Consider now the system

c1~u + c2~v + c3 ~w = ~z,

or, in matrix form, 
1 0 0
0 1 −1
0 −2 1
3 0 1


 c1

c2
c3

 =


2
−3

2
−3

 .

The augmented matrix of the system is 
1 0 0

... 2

0 1 −1
... −3

0 −2 1
... 2

3 0 1
... −3

 .

Applying Gauss-Jordan elimination we find
1 0 0

... 0

0 1 0
... 0

0 0 1
... 0

0 0 0
... 1

 .

The last row corresponds to

0c1 + 0c2 + c0c3 = 1,
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which of course is contradictory, hence the system has no solution and therefore ~z cannot be expressed as
a linear combination of ~u, ~v, and ~w.

Remark. It is important to notice that linear independence per se is not a guarantee that the system will
always have a solution. More precisely, a set of vectors f1, f2, . . . , f` in a vector space V being linearly
independent does not automatically guarantee that any g ∈ V can be written as

g = c1f1 + c2f2 + · · ·+ c`f`.

While the vectors ~u and ~v of problem 1 are linearly independent and it was possible to write ~w as a linear
combination of them, the vectors ~u, ~v and ~w of problem 2 are also linearly independent, but the system

~z = c1~u+ c2~v+ c3 ~w had no solution. As another example, think of the vectors ~a = (1, 0, 0) and ~b = (0, 1, 0)

in R3: they are linearly independent, and any vector of the form (x, y, 0) can be written in terms of ~a and ~b,
but (0, 0, 1) cannot. The situation is different, however, when we have a basis: if the vectors f1, f2, . . . , f`
form a basis of a vector space V , then not only are they linearly independent but it is also true that any
g ∈ V can be written as

g = c1f1 + c2f2 + · · ·+ c`f`.

3. This is the same system we had in the exmaples of sections 4.1 and 4.2; only the interpretation of the
solution is different.

The augmented matrix of the system is
1 −4 −3 −7

... 0

2 −1 1 7
... 0

1 2 3 11
... 0

 .

Applying Gauss-Jordan elimination we find
1 0 1 5

... 0

0 1 1 3
... 0

0 0 0 0
... 0

 .

Therefore x3 and x4 are free variables. Denoting by x3 = s, x4 = t, we can then write

x1 = −s− 5t,

x2 = −s− 3t.

Therefore solutions ~x = (x1, x2, x3, x4) can be written as
x1
x2
x3
x4

 =


−s− 5t
−s− 3t

s
t

 = s


−1
−1
1
0

+ t


−5
−3
0
1

 = s~u + t~v,

where

~u =


−1
−1
1
0

 , ~v =


−5
−3
0
1

 .
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The vectors ~u and ~v are a basis for the solution space of the system. In other words, any solution ~x of the
system can be written as

~x = s~u + t~v,

for some s, t ∈ R.

URL: http://www.disconzi.net/Teaching/MAT196-Spring-15/MAT196-Spring-15.html


