VANDERBILT UNIVERSITY MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA SOLUTIONS TO THE PRACTICE MIDTERM.

Question 1. Classify the differential equations below as linear or non-linear and state their order. (a) $y' + y^2 = 0$

(a) y' + y' = 0(b) $\frac{d^2x}{dt^2} + 25x = \cos(t)$ (c) $yy'' = \sqrt{y}$ (d) $e^{\sin x^2} \frac{dy}{dx} + xy = e^{-x}$ (e) $e^{\cos x^4} \frac{dy}{dx}y = e^{-x}$

Solution.

- (a) Non-linear first order.
- (b) Linear second order.
- (c) Non-linear second order.
- (d) Linear first-order.
- (e) Non-linear first order.

Question 2. The acceleration of an object moving in a straight line is proportional to the logarithm of the time elapsed since its departure. Find an equation for its position after time t. Is this a well defined problem?

Solution. Write

$$\frac{dv}{dt} = k \ln t \Rightarrow \int dv = k \int \ln t \, dt,$$

 \mathbf{SO}

$$v(t) = kt\ln t - kt + v_0.$$

Notice that this is defined at t = 0 since $t \ln t \to 0$ as $t \to 0^+$. Integrating again gives

$$x(t) = -\frac{3}{4}kt^2 + \frac{1}{2}kt^2\ln t + v_0t + x_0,$$

where again we see that this is well-defined at t = 0.

Question 3. A 300 ℓ tank initially contains 10 kg of salt dissolved in 100 ℓ of water. Brine containing $2 kg/\ell$ of salt flows into the tank at the rate $4 \ell/\min$, and the well-stirred mixture flows out of the tank at the rate $2 \ell/\min$. How much salt does the tank contain when 80% of its capacity is full?

Solution. Let x(t) and V(t) be respectively the amount of salt in the tank and the volume at time t. Then

$$\frac{dx}{dt} = in - out = 2 kg/\ell \times 4 \ell / \min - \frac{x(t) kg}{V(t) \ell} \times 2 \ell / \min.$$

The volume at time t is V(t) = 100 + 4t - 2t = 100 + 2t, so

$$\frac{dx}{dt} + \frac{x}{50+t} = 8.$$

This is a linear first order equation, where the initial condition is x(0) = 10. Using the formula derived in class (also in page 49 of the textbook) we find

$$x(t) = \frac{4(t^2 + 100t + 125)}{50 + t}$$

The tank will be 80 % full when V(t) = 100 + 2t = 240, so t = 70. Then x(70) = 601.25 kg.

Question 4. Solve the following differential equations:

(a)
$$y' = -\frac{2xy^3 + e^2}{3x^2y^2 + \sin y}$$

(b) $-x^2y' + xy^2 + 3y^2 = 0$
(c) $x^2y' = xy + y^2$
(d) $x^3 + 3y - xy' = 0$.
(e) $y' = x^2 - 2xy + y^2$

Solution.

(a). This is an exact equation. Using the methods of section 1.6 we find the (implicit) solution $x^2y^3 + e^x - \cos y = C$.

(b) This is a separable equation. Separating variables and integrating we find $y = \frac{x}{3-x \ln x - Cx}$.

(c) This is a homogeneous equation. Using the methods of section 1.6 we find the solution $y = \frac{x}{C - \ln x}$.

(d) Writing the equation as $y' - \frac{3}{x}y = x^3$ we obtain that this is a linear equation. Using the formula for linear equations derived in class (also in page 49 of the textbook) we find $y = x^3(\ln x + C)$.

(e) Making the substitution v = y - x we obtain $v' = v^2$, which is a separable equation for v. Solving and returning to y gives the (implicit) solution $y - x - 1 = Ce^{2x}(y - x + 1)$.

Question 5. Consider a second order homogeneous linear differential equation. Show that any linear combination of two solutions is also a solution. Can you make a similar statement for higher order equations?

Solution. Write

$$y'' + a(x)y' + b(x)y = 0$$

Let y_1 and y_2 be two solutions, and c_1 and c_2 two constants. Set $w = c_1y_1 + c_2y_2$. Then

$$w'' + a(x)w' + b(x)w = (c_1y_1 + c_2y_2)'' + a(x)(c_1y_1 + c_2y_2)' + b(x)(c_1y_1 + c_2y_2)$$

= $c_1(y_1'' + a(x)y_1' + b(x)y_1) + c_2(y_2'' + a(x)y_2' + b(x)y_2) = 0 + 0$
= 0,

hence w is also a solution.

Question 6. Solve the linear systems below, when possible.

(a)

$$\begin{cases} 3x + 5y - z = 13\\ 2x + 7y + z = 28\\ x + 7y + 2z = 32 \end{cases}$$

Solution. The augmented matrix of the system is

3	5	-1	÷	13
2	7	1	÷	18
$\lfloor 1$	$\overline{7}$	2	÷	32

Applying Gauss-Jordan elimination we find

	1	0	0	÷	1
	0	1	0	÷	3
L	0	0	1	÷	5

So that x = 1, y = 3, z = 5.

(b)

ĺ	2x	+	3y	+	7z	=	15
ļ	x	+	4y	+	z	=	20
l	x	+	2y	+	3z	=	10

Solution. The augmented matrix of the system is

$$\begin{bmatrix} 2 & 3 & 7 & \vdots & 15 \\ 1 & 4 & 1 & \vdots & 20 \\ 1 & 2 & 3 & \vdots & 10 \end{bmatrix}$$

Applying Gauss-Jordan elimination we find

$$\begin{bmatrix}
1 & 0 & 5 & \vdots & 0 \\
0 & 1 & -1 & \vdots & 5 \\
0 & 0 & 0 & \vdots & 0
\end{bmatrix}$$

Therefore z is a free variable, and solutions are given by x = -5z, y = 5 + z, and z can be any real number.

(c)

ſ	x	_	3y	+	2z	=	6
ł	x	+	4y	—	z	=	4
l	5x	+	6y	+	z	=	20

Solution. The augmented matrix of the system is

Applying Gauss-Jordan elimination we find

$$\begin{bmatrix} 1 & -3 & 2 & \vdots & 6 \\ 0 & 7 & -3 & \vdots & -2 \\ 0 & 0 & 0 & \vdots & -\frac{4}{3} \end{bmatrix}$$

The last row means $0 = -\frac{4}{3}$, hence the system is inconsistent, i.e., it has no solution. Question 7. Let

$$A = \left[\begin{array}{cc} 2 & 1 \\ 4 & 3 \end{array} \right]$$

and

$$B = \left[\begin{array}{rrr} -1 & 0 & 4 \\ 3 & -2 & 5 \end{array} \right].$$

Calculate whichever of the matrices AB and BA is defined.

Solution. AB is well defined, but BA is not. Computing

$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix},$$
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -6 \end{bmatrix},$$

and

$$A = \left[\begin{array}{cc} 2 & 1 \\ 4 & 3 \end{array} \right] \left[\begin{array}{c} 4 \\ 5 \end{array} \right] = \left[\begin{array}{c} 13 \\ 31 \end{array} \right],$$

we find

$$AB = \left[\begin{array}{rrr} 1 & -2 & 13 \\ 5 & -6 & 31 \end{array} \right].$$

Question 8. Let

$$A = \begin{bmatrix} 2 & 0 & 0 & -3 \\ 0 & 1 & 11 & 12 \\ 0 & 0 & 5 & 13 \\ -4 & 0 & 0 & 7 \end{bmatrix}$$

Compute det A. What can you say about A^{-1} ?

Solution.

$$\det A = 2 \det \begin{bmatrix} 1 & 11 & 12 \\ 0 & 5 & 13 \\ 0 & 0 & 7 \end{bmatrix} - (-4) \det \begin{bmatrix} 0 & 0 & -3 \\ 1 & 11 & 12 \\ 0 & 5 & 13 \end{bmatrix}$$
$$= 2 \cdot 1 \cdot 5 \cdot 7 + 4(-1) \det \begin{bmatrix} 0 & -3 \\ 5 & 13 \end{bmatrix}$$
$$= 70 - 4 \cdot (0 - (-15)) = 10.$$

Since det $A \neq 0$, A^{-1} exists.

Question 9. Show that the vectors $\vec{v}_1 = (2, -1, 4)$, $\vec{v}_2 = (3, 0, 1)$, and $\vec{v}_3 = (1, 2, -1)$, are linearly independent and that span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$.

Solution. Write

$$A = [\vec{v}_1 \, \vec{v}_2 \, \vec{v}_3].$$

Applying Gauss-Jordan elimination we find

$$\operatorname{rref}(A) = I,$$

therefore A is invertible. Hence $A\vec{x} = \vec{b}$ always has a solution — so span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$ — and the solution is unique — so

$$A\vec{x} = x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3 = \vec{0}$$

has only the trivial solution, and we conclude that the vectors are linearly independent.

Question 10. True or false? Justify your answer.

- (a) If the system $A\vec{x} = \vec{b}$ always has a solution for any vector \vec{b} , then the matrix A is invertible.
- (b) The set of all 3×3 invertible matrices is a subspace of the vector space of all 3×3 matrices.
- (c) If $\operatorname{rref}(A) = I$ then $\det A \neq 0$.

(d) If A is $n \times m$, and the rank of A is less than n, then there exists at least one vector $\vec{b} \in \mathbb{R}^n$ such that the system $A\vec{x} = \vec{b}$ has no solution.

(e) Let A be a $n \times m$ matrix and $\vec{b} \in \mathbb{R}^n$. The set of all vectors $\vec{x} \in \mathbb{R}^m$ that solve the system $A\vec{x} = \vec{b}$ is a subspace of \mathbb{R}^m if, and only if, $\vec{b} = \vec{0}$. In particular, if $\vec{b} \neq \vec{0}$, then set of all vectors $\vec{x} \in \mathbb{R}^m$ that solve the system $A\vec{x} = \vec{b}$ is never a subspace of \mathbb{R}^m .

Solution.

(a) False, since A does not have to be a square matrix (if A is square though then the statement is true).

(b) False. The matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

are invertible, but

$$A + B = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

is not.

(c) True. If $\operatorname{rref}(A) = I$ then A is invertible, hence det $A \neq 0$.

(d) True. If the rank of A is less than n, then $\operatorname{rref}(A)$ has at least one row, say, the k^{th} row, with only zero entries. Therefore the rref of the augmented matrix of a system with non-zero k^{th} entry on the last column yields an inconsistent system.

(e) True. $A\vec{x} = \vec{b}$, with $\vec{b} \neq \vec{0}$, is not a subspace because it does not contain $\vec{x} = \vec{0}$.