
VANDERBILT UNIVERSITY

MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA

SOLUTIONS TO THE PRACTICE FINAL.

Remark: The formulas for the Laplace transform of commonly used functions, along with its
properties, will be given in the exam. Therefore, you do not have to memorize them.

Question 1. Solve the linear systems below, when possible.

(a) 
3x + 3y + 2z = 5

2x + 5y + 2z = 3

2x + 7y + 7z = 22

Solution. The augmented matrix is


3 3 2

... 5

2 5 2
... 3

2 7 7
... 22

 .
Applying Gauss-Jordan we find 

1 0 0
... 4

0 1 0
... −3

0 0 1
... 5

 ,
hence x = 4, y = −3, z = 5.

(b) 
2x + 2y + 4z = 2

x − y − 4z = 3

2 + 7y + 19z = −3

Solution. The augmented matrix is 
2 2 4

... 2

1 −1 −4
... 3

2 7 19
... −3

 .
Applying Gauss-Jordan we find 

1 0 −1
... 2

0 1 3
... −1

0 0 0
... 0

 ,
1
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hence x = 2 + z, y = −1− 3z, and z is a free variable.

(c) 
x1 − 2x2 − 5x3 − 12x4 + x5 = 0

2x1 + 3x2 + 18x3 + 11x4 + 9x5 = 0

2x1 + 5x2 + 26x3 + 21x4 + 11x5 = 0

Solution. The augmented matrix is
1 −2 −5 −12 1

... 0

2 3 18 11 9
... 0

2 5 26 21 11
... 0

 .
Applying Gauss-Jordan we find 

1 0 3 −2 3
... 0

0 1 4 5 1
... 0

0 0 0 0 0
... 0

 ,
hence x1 = −3x3 + 2x4 − 3x5, x2 = −4x3 − 5x4 − x5, with x3, x4 and x5 free variables.

Remark. For problem 2, notice that the rref of the given matrices was found in problem 1: we need
to simply ignore the last column of the augmented matrix.

Question 2. Consider the matrix

A =

 3 3 2
2 5 2
2 7 7

 .
Using the results and calculation of question 1,

(a) Determine whether or not detA = 0.

Solution. As rref(A) = I, A−1 exists, hence det(A) 6= 0.

(b) Find basis for Col(A), Row(A) and Ker(A), if possible.

Solution. Since A is invertible, Col(A) = R3, and we can pick any basis of R3. From rref(A) = I
we also have Row(A) = R3 and Ker(A) = {0}.
(c) Determine what properties a vector ~b ∈ R3 must have so that the system A~x = ~b always has a
solution.

Solution. The system always has a unique solution since A is invertible.

(d) Again using question 1, repeat (a)-(c) with the matrix

B =

 2 2 4
1 −1 −4
2 7 19

 .
Solution. The rref has only two pivot columns, therefore A is not invertible; then det(B) = 0. From
the rref we read off (1, 0,−1) and (0, 1, 3) as basis of the row space. Since the first two columns of
the rref are pivot columns, the two original columns of B form a basis for the space of columns.
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Next, setting equal to zero all entries on the last column of the augmented matrix , we obtain that

(1,−3, 1) is a basis for the kernel of B. Finally, B~x = ~b has a solution if and only if ~b ∈ Col(B).

(e) Once again, with the help of question 1, repeat (b)-(c) with the matrix

C =

 1 −2 −5 −12 1
2 3 18 11 9
2 5 26 21 11

 .
Solution. Similar to (b).

Question 3. Diagonalize the matrices below, when possible.

(a) 
1 1 0 1
0 1 1 1
0 0 2 1
0 0 0 2

 .
Solution. The characteristic polynomial is (λ − 1)2(λ − 2)2 = 0, so the eigenvalues are λ = 1 and
λ = 2, both with multiplicity two. The eigenvectors are (1, 0, 0, 0) and (1, 1, 1, 0) associated with
λ = 1 and λ = 2, respectively. Since there are only two linearly independent eigenvectors for this
four by four matrix, it is not diagonalizable.

(b)  2 0 0
−6 11 2
6 −15 0

 .
Solution. The characteristic polynomial is −λ3 + 13λ2 − 52λ + 60 = −(λ − 2)(λ − 5)(λ − 6) = 0.
Notice that since all eigenvalues are distinct, we already know at this point that the matrix is
diagonalizable. The eigenvectors associated with λ = 2, λ = 5 and λ = 6 are, respectively, (1, 0, 3),
(0,−1, 3), (0,−2, 5). The matrices S and D are

S =

 1 0 0
0 −1 −2
3 3 5

 , D =

 2 0 0
0 5 0
0 0 6

 .
(c) 

1 0 −2 0
0 1 −2 0
0 0 −1 0
0 0 0 −1

 .
Solution. The characteristic polynomial is (λ + 1)2(λ − 1)2 = 0. Therefore λ = −1 and λ = 1 are
eigenvalues with multiplicity two. The corresponding eigenvectors are (0, 0, 0, 1), (1, 1, 1, 0), (0, 1, 0, 0)
and (1, 0, 0, 0). Since there are four linearly independent eigenvectors, the matrix is diagonalizable
and

S =


0 1 0 1
0 1 1 0
0 1 0 0
1 0 0 0

 , D =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .
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Question 4. For each diagonalizable matrix of the question 3, compute its determinant using the
properties of the determinant and your answer to that question.

Solution. If a matrix A is diagonalizable, then A = SDS−1, where D is a diagonal matrix with the
eigenvalues along the diagonal. Taking the determinant and using its properties

det(A) = det(SDS−1) = detS detD det(S−1) = detS detD
1

detS
= detD.

But detD is simply the product of the eigenvalues. Hence we obtain 6 and 1 for the diagonalizable
matrices of the previous problem.

Question 5. Prove or give a counter-example: every invertible matrix is diagonalizable.

Solution. The matrix of problem 3a is invertible (its determiant is easily seen to be 4 since the
matrix is upper triangular), but not diagonalizable.

Question 6. Recall that two matrices A and B are said to be similar if there exists an invertible
matrix matrix S such that A = S−1BS. Suppose A and B are two diagonalizable matrices with the
same eigenvalues (with the same multiplicities). Show that A and B are similar. Hint: A and B are
similar to diagonal matrices D1 and D2, respectively, since they are diagonalizable by hypothesis.
Can you see what the relation between D1 and D2 is?

Solution. By hypothesis

D1 = S−11 AS1

and

D2 = S−12 BS2.

But D1 = D2, also by hypothesis, so

S−11 AS1 = S−12 BS2 ⇒ A = S1S
−1
2 BS2S

−1
1 =

(
S2S

−1
1

)−1
BS2S

−1
1 .

Hence

A = S−1BS.

with S = S2S
−1
1 .

Question 7. Find the general solution of the differential equations below.

(a)

y′ = 1 + x2 + y2 + x2y2.

Solution. This is a separable equation. We find y = tan(C + x+ x3

3 ).

(b)

2x2y − x3y′ = y3.

Solution. This is a homogeneous equation to which we can apply the substitution v = y
x . The

solution is y2 = Cx2(x2 − y2).
(c)

y′′ − 6y′ + 13y = xe3x sin(2x).
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Solution.

y = e3x
(
c1 cos(2x) + c2 sin(2x)

)
+ x
(

(Ax+B)e3x cos(2x) + (Cx+D)e3x sin(2x)
)
.

(d)

y′′′′ − 2y′′ + y = x2 cosx+ π.

Solution.

y = (c1 + c2x)e−x + (cx + c4x)ex + (Ax2 +Bx+ C) cosx+ (Dx2 + Ex+ F ) sinx+G.

(e)

y′′ + 4y = sin2 x.

Solution.

y = c1 cos(2x) + c2 sin(2x) +
1− x sin(2x)

8
.

Question 8. Solve the system

~x′ = A~x

for each one of the matrices in question 3.

Solution a. This is a case with a defect. Using the recipe from section 7.5, we find two other linearly
independent vectors (0, 1, 0, 0) and (0, 0, 0, 1) associated with the eigenvalues 1 and 2, respectively.
We can now proceed as usual to write the solutions

~x1 =


1
0
0
0

 et, ~x2 =


1
0
0
0

 tet +


0
1
0
0

 et,

~x3 =


1
1
1
0

 e2t, ~x4 =


1
1
1
0

 te2t +


0
0
0
1

 e2t.
Solution b. Three linearly independent solutions are

~x1 =

 1
0
3

 e2x, ~x2 =

 0
−1
3

 e5x, ~x1 =

 0
−2
5

 e6x.
Solution c. Four linearly independent solutions are

~x1 =


0
0
0
1

 e−x, ~x2 =


1
1
1
0

 e−x, ~x3 =


0
1
0
0

 ex, ~x4 =


1
0
0
0

 ex.
Question 9. A mass of 5 kg stretches a spring 10 cm. The mass is acted on by an external force
of 10 sin(t/2)N and moves in a medium that imparts a viscous force of 2N when the speed of the
mass is 4 cm/s. If the mass is set in motion from its equilibrium position with an initial velocity of
3 cm/s, determine its position x as a function of the time t.
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Solution. The equation is

5x′′ + 50x′ + 490x = 10 sin
t

2
,

or

x′′ + 10x′ + 98x = 2 sin
t

2
.

The characteristic roots are

λ = −5±
√

73i.

Hence e−5t cos(
√

73t) and e−5t sin(
√

73t) are two linearly independent solutions. The particular
solution is

yp = A cos
t

2
+B sin

t

2
.

We find after some algebra, A = −40/153 281, B = 782/153 281.
The initial conditions are x(0) = 0 and x′(0) = 0.03, which can then be used to find the constants

c1 and c2 in

x(t) = c1e
−5t cos(

√
73t) + c2e

−5t sin(
√

73t) +A cos
t

2
+B sin

t

2
.

Question 10. Consider two block of masses m1 and m2, respectively. The first block is attached to
a spring of constant k1 which, in turn, is attached to a wall, while the second block is connected to
the first one by a second spring whose constant equals k2. Let x1 and x2 denote the position of blocks
one and two, respectively, as measured with respect to the wall. The situation is as illustrated in the
picture below. Write an initial value problem which determines the motion of the system (disregard
friction).

Figure 1. Mass-spring system of question 10.

Solution. It suffices to write a system for the displacements y1 and y2 with respect to the equilibrium
positions of the blocks one and two, since if these, when measured with respect to the wall, are given,
respectively, by `1 and `2, then x1 = `1 + y1 and x2 = `2 + y2. Proceeding as we did in class, we
easily find

m1y
′′
1 = −k1y1 − k2y1 + k2y2

m2y
′′
2 = −k2y2 + k2y1,

y1(0) = a, y′1(0) = b, y2(0) = c, y′2(0) = d.
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Question 11. Repeat the previous problem for the following system:

Figure 2. Mass-spring system of question 11.

Solution. Similar to the previous problem.

m1y
′′
1 = −k1y1 − k2y1 + k2y2

m2y
′′
2 = k2y1 − k2y2 − k3y2

y1(0) = a, y′1(0) = b, y2(0) = c, y′2(0) = d.

Question 12. Use Laplace transforms to solve the initial value problems below.

(a) {
x′′ − 6x′ + 8x = 2,

x(0) = x′(0) = 0.

Solution.

X(s) =
2

s(s2 − 6s+ 8)
=

1

4s
+

1

4

1

s− 4
− 1

2

1

s− 2
,

x(t) =
1

4
(1 + e4t − 2e2t).

(b) {
x′′′′ + 13x′′ + 36x = 0,

x(0) = x′′(0) = 0, x′(0) = 2, x′′′(0) = −13.

Solution.

X(s) =
2s2 + 13

s4 + 13s2 + 36
=

1

s2 + 4
+

1

s2 + 9
,

x(t) =
1

2
sin(2t) +

1

3
sin(3t).

(c) {
x′′ + 6x′ + 18x = cos(2t),

x(0) = 1, x′(0) = −1.

Solution.

X(s) =
s+ 5

s2 + 6s+ 18
+

s

(s2 + 4)(s2 + 6s+ 18)
=

1

170

(7s+ 12

s2 + 4
+

163(s+ 3)

(s+ 3)2 + 9
+

307

(s+ 3)2 + 9

)
,

x(t) =
1

170

(
7 cos(2t) + 6 sin(2t)

)
+

1

510
e−3t

(
489 cos(3t) + 307 sin(3t)

)
.
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(d) 
x′′ + x′ + y′ + 2x− y = 0,

y′′ + x′ + y′ + 4x− 2y = 0,

x(0) = y(0) = 1, x′(0) = y′(0) = 0.

Solution.

X(s) =
s2 + 3s+ 2

s3 + 3s2 + 3s

=
2

3s
+

1

3

s+ 3/2

(s+ 3/2)2 + (
√

3/2)2
+

√
3

3

√
3/2

(s+ 3/2)2 + (
√

3/2)2

Y (s) =
−s3 − 2s2 + 2s+ 4

s3 + 3s2 + 3s

=
28

21s
− 9

21

1

s− 1
+

2

21

s+ 3/2

(s+ 3/2)2 + (
√

3/2)2
+

8
√

3

21

√
3/2

(s+ 3/2)2 + (
√

3/2)2
.

x(t) =
1

3

(
2 + e−3t/2 cos(

√
3t/2) + e−3t/2

√
3 sin(

√
3t/2)

)
,

y(t) =
1

21

(
28− 9et + 2e−3t/2 cos(

√
3t/2) + 8

√
3e−3t/2 sin(

√
3t/2)

)
.


