
SOLUTIONS TO QUIZ 2

MATH 196.3

Problem 1. Show that x1 = t2, x2 = t−3 are solutions of

t2x′′ + 2tx′ − 6x = 0

Find another solution satisfying x(1) = 1, x′(1) = −6.

Solution. For x1:

t2x′′1 + 2tx′1 − 6x1 = t2 · 2 + 2t · 2t− 6t2 = (2 + 4− 6)t2 = 0 X

For x2:

t2x′′2 + 2tx′2 − 6x2 = t2 · 12t−5 + 2t · (−3)t−4 − 6t−3 = (12− 6− 6)t−3 = 0 X

Now to solve the initial value problem, we write our unknown x(t) = c1x1 + c2x2
and use the given data to find its coefficients:

1 = x(1) = c1x1(1) + c2x2(1) = c1 + c2

−6 = x′(1) = c1x
′
1(1) + c2x

′
2(1) = 2c1 − 3c2

The solution to this system is c1 = − 3
5 , c2 = 8

5 , so the final answer is

x(t) = −3

5
t2 +

8

5
t−3

�

Problem 2. Find a general solution to

y(4) + 3y′′ − 4y = 0

Solution. The polynomial equation associated to this ODE is

λ4 + 3λ2 − 4 = 0

I saw more than one person try to solve this equation by moving the constant term
to the right and then factoring:

λ2(λ2 + 3) = 4

DO NOT DO THIS. For one thing, it gives the wrong answer; for another thing, it
completely misses the underlying reason why factoring polynomials helps find their
roots, which is the ”zero product” property of the real (and complex) numbers.

To solve this equation, we could do one of two things. First, we could observe
that it is actually a quadratic equation in λ2. Alternatively, we could notice that,
because the coefficients sum to zero, λ = 1 is a root, and since the polynomial is
even, that means λ = −1 is also. Either way, we get that this equation factors

(λ− 1)(λ+ 1)(λ2 + 4) = 0

so its roots are λ = ±1, λ = ±2i.
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Hence the basic solutions to our original ODE are ex, e−x, cos(2x), sin(2x), and
a general solution is a generic linear combination of these:

y = c1e
x + c2e−x + c3 cos(2x) + c4 sin(2x)

Notice that this has four free parameters; you were guaranteed to lose points if you
had fewer. �

Problem 3. Find a basis for the column space of

A =

 3 0 −3 2 2
−1 1 4 0 −1
4 −2 −10 5 7


Express each of the columns in terms of your basis.

Solution. Many of you remembered that, when extracting a basis out of a set of
columns, the first step is row-reducing. Many of you reduced A to a matrix looking
like this:

B =

1 0 −1 −3 ∗
0 1 3 −3 ∗
0 0 0 11 ∗


This is where many people made the following mistake: they said that the leading
ones were in columns 1 and 2, therefore the column basis was the original columns
1 and 2.

What is the problem with this? That the leading 11 in the last row is just as
relevant as a leading 1 would be (and in fact, if we divided the last row by 11,
which is a perfectly valid row operation, then we would get a leading 1 in the
fourth column!) Another way to think about this: once we’ve gotten to the matrix
B above, we can see that the row rank is equal to 3; but we know that row rank
and column rank are equal, meaning we need to find three basis columns also.

Ok, so columns ~a1,~a2, and ~a4 of A are a basis for the column space. How do we
go about expressing column 3 and column 5 in terms of that basis? Well, it turns
out that reducing all the way down to the reduced row echelon form

C =

1 0 −1 0 0
0 1 3 0 −1
0 0 0 1 1


is the way to go here. Why? Because asking for coefficients c1, c2, c4 such that
c1~a1 + c2~a2 + c4~a4 = ~a3 is the same as reducing the submatrix

(
~a1 ~a2 ~a4 ~a3

)
to

1 0 0 −1
0 1 0 3
0 0 1 0


which we’ve basically already done: the same reduction steps that got us C will
work here. Similarly

(
~a1 ~a2 ~a4 ~a5

)
row reduces to

1 0 0 0
0 1 0 −1
0 0 1 1


Hence we have

~a3 = 3~a2 − ~a1 ~a5 = ~a4 − ~a2
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The foregoing was the way you were taught to solve this problem in the book.
However, there is a tricky way too, once you’ve row-reduced to B. Since the rank
of B is 3, we know that the column space is a 3-dimensional subspace of R3. But
there’s only one such subspace: R3 itself! And we know a really useful basis of R3,
namely ~e1, ~e2, ~e3. With respect to this basis, however, our columns are

~a1 = 3~e1 − ~e2 + 4~e3

~a2 = ~e2 − 2~e3

...

which is more complicated than the expression in terms of the basis of columns. �

Problem 4. Find a basis for the subspace V ≤ R4 consisting of all vectors orthog-

onal to


1
−2
3
−4

.

Solution. Call the given vector ~a. Saying “~x is orthogonal to ~a” is a matrix equation

(
1 −2 3 −4

)
x1
x2
x3
x4

 = 0

(check: how many rows and columns should the product on the left have?). Mag-
ically, this equation is already in reduced form: we have three free parameters
x4 = t1, x3 = t2, x2 = t3 forcing x1 = 2t3 − 3t2 + 4t1. Hence

x1
x2
x3
x4

 = t1


4
0
0
1

+ t2


−3
0
1
0

+ t3


2
1
0
0


and the three vectors above form a basis for V . �

Problem 5. Give three linearly independent solutions of the ODE

y(3) − 3y′ − 2y = 0

Use the Wronskian to show they are linearly independent.

Solution. Again, some people wanted to factor the characteristic equation

λ(λ2 − 3) = 2

and get roots λ = 0, λ = ±
√

3. DO NOT DO THIS. IT IS WRONG. Instead,
observe that λ = −1 is a root, and factor the polynomial into

(λ+ 1)(λ+ 1)(λ− 2) = 0

giving basis functions e−x, xe−x, e2x.
The Wronskian of these three functions is

W = det

 e−x e2x e−x · x
−e−x 2e2x e−x(1− x)
e−x 4e2x e−x(x− 2)


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I recommend expanding along the first column; notice that every subdeterminant
term will have a factor of e2xe−x, which we can bring out front:

W = e−xe2xe−x (2(x− 2)− 4(1− x) + 1(x− 2)− 4x+ 1(1− x)− 2x)

= e0x (0x− 9)

= −9

which is never 0; hence the three functions are linearly independent on the whole
real line. �


