VANDERBILT UNIVERSITY MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA SOME FORMULAS.

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{\frac{n!}{s^{n+1}}}{\frac{1}{s-a}}$ $\frac{\frac{n!}{(s-a)^{n+1}}}{\frac{s^2+k^2}{\frac{k}{s^2+k^2}}}$
$\cos(kt)$	$\frac{s}{s^2+k^2}$
$\sin(kt)$	$\frac{k}{s^2+k^2}$
$e^{at}\cos(kt)$ $e^{at}\sin(kt)$	$\frac{s-a}{(s-a)^2+k^2}$
$e^{at}\sin(kt)$	$\frac{\frac{s-a}{(s-a)^2+k^2}}{\frac{k}{(s-a)^2+k^2}}$

The table below indicates the Laplace transform F(s) of the given function f(t).

The following are the main properties of the Laplace transform.

af(t) + bg(t)	aF(s) + bG(s)
f'(t)	sF(s) - f(0)
f''	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$

The particular solution of

$$y'' + p(t)y' + q(t)y = f(t)$$

is

$$y_p(t) = -y_1(t) \int \frac{y_2(t)f(t)}{W(t)} dt + y_2(t) \int \frac{y_1(t)f(t)}{W(t)} dt,$$

where $y_1(t)$ and $y_2(t)$ are linearly independent solutions of the associated homogeneous problem and W(t) is the Wronskian of $y_1(t)$ and $y_2(t)$.