VANDERBILT UNIVERSITY
MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA
EXAMPLES OF SECTIONS 7.1 AND 7.2.

Question 1. Transfor the given DE into an equivalent system of first order DEs:

32" — 222" + 3tz + bz = Int.

Question 2. Write the system of question 1 in matrix form.

Question 3. Consider the system

Determine whether the vectors

and
. 62t
T = —282t

are solutions of the system. What can you say about the general solution?
SOLUTIONS.

1. Let 1 = 2, x9 = 2} = 2/, x3 = 2, = 2", hence
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zy = x3
xh = =31 — = Ing
3 31 t2x2 + tzd + 3
2. We readily see that if
T
Tr= T2
x3

and
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then
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3. First compute

But

so that
—/ 4 1 —
A= 2 1| "
and 1 is a solution.

Let us verify that &5 is a solution in a different way. Write
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Taking the derivative we have
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Now compute

so that
i 4 11,
332 = 92 1 X9
and ¥ is a solution.

Let us verify now that z; and z9 are linearly independent. Their Wronskian is
3t 2t
e e
W(t) = det [ _ 3t _op2
hence the solutions are linearly independent. Since the system is 2 x 2, it admits at most two linearly
independent solutions. We conclude that the general solution is

:| — 63t(_262t) . 62t(_63t) — _€5t 75 O,

T = 171 + c2Zs.



