VANDERBILT UNIVERSITY
MATH 196 — DIFFERENTIAL EQUATIONS WITH LINEAR ALGEBRA
EXAMPLES OF SECTIONS 4.3 AND 4.4.

Question 1. Verify whether the given vectors @ = (7,3,—1,9), ¥ = (—2,-2,1,3) are linearly
independent. If possible, express W = (4, —4,3,3) as a linear combination of % and .

Question 2. Verify whether the given vectors @ = (1,0,0,3), ¥ = (0,1,—2,0), @ = (0,—1,1,1) are
linearly independent. If possible, express z = (2, —3,2,—3) as a linear combination of @, ¥ and .

Question 3. Find a basis for the solution space of the linear system:

I - 451?2 - 3%3 - 7(L‘4 = 0
200 — x0 4+ 3 + Txgy = 0
r1 + 229 + 3x3 + 1llxzy = 0
SOLUTIONS.
1. Consider the matrix
7T =2
e 3 =2
A=[uv]= 11
9 -3

Its submatrix

=y

has determinant equal to (—2) x 7 — (=2) x 3 = —14 + 6 = —8 # 0, hence the vectors are linearly
independent.
Consider now the system

Clﬁ+ 0217 = 13,

or, in matrix form,

7T =2 4
3 2 ([l | 4
-1 1 |: Co :| o 3
9 -3 3

The augmented matrix of the system is

7T =2 —4
3 -2 —4
-1 1 3

L 9 -3 3
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Applying Gauss-Jordan elimination we find

1 2
0 )
0 0

0
1
0
L0 O 0 |

This means that the system has solution ¢; = 2 and ¢y = 5, therefore

W = 2U + 5.

2. Consider the matrix

1 0 0
oo 10 1 -1
A=[uvw] = 0 —9 1
3 0 1
Its submatrix
1 0 0
0 1 -1
0 -2 1

has determinant equal to 1 x (1 x1—(—1) x (—=2)) =1—2 = —1 # 0, hence the vectors are linearly
independent.
Consider now the system

1 + cal + c3W = 7,

or, in matrix form,

1 0 0 2
0o 1 -1]|% -3
0 -2 1[|2]|7] 2
3 0 1]L® -3
The augmented matrix of the system is
(1 0 0 2]
0 1 -1 : -3
0 -2 1 2
'3 0 1 : -3

Applying Gauss-Jordan elimination we find

1 00:0
010 :0
001 :0
L0 0 0 ¢ 1]
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The last row corresponds to
Ocy + 0co 4 c0c3 =1,

which of course is contradictory, hence the system has no solution and therefore z’ cannot be expressed
as a linear combination of u, ¥, and .

Remark. It is important to notice that linearly independence per se is not a guarantee that the
system will always have a solution. More precisely, a set of vectors fi, fo, ..., fr in a vector space
V being linearly independent does not automatically guarantee that any g € V' can be written as

g=cifi+cafo+---+cuf.

While the vectors @ and ¥ of problem 1 are linearly independent and it was possible to write i as a
linear combination of them, the vectors 4, ¥ and W of problem 2 are also linearly independent, but
the system Z' = ¢yt + o+ c3wf had no solution. As another example, think of the vectors @ = (1,0, 0)
and b = (0,1,0) in R3: they are linearly independent, and any vector of the form (z,y,0) can be
written in terms of @ and 5, but (0,0, 1) cannot. The situation is different, however, when we have
a basis: if the vectors fi1, fo, ..., fr form a basis of a vector space V', then not only are they linearly
independent but it is also true that any g € V' can be written as

g=cifi+cafo+---+cufe

3. This is the same system we had in the exmaples of sections 4.1 and 4.2; only the interpretation
of the solution is different.
The augmented matrix of the system is

1 -4 -3 -7 :0
2 -1 1 7 :0
1 2 3 11 : 0
Applying Gauss-Jordan elimination we find
1015 :0

0113 :0
000O0:0

Therefore x3 and z4 are free variables. Denoting by x5 = s, x4 = t, we can then write

T = —s — o,

r9g = —s — 3t.

Therefore solutions & = (z1, 2, x3,24) can be written as

T —s — bt —1 -5
T2 —s— 3t =s -1 + ¢ —3 = st + tU,
T3 s 1 0

T4 t 0 1
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where
-1 -5
i -1 5 -3
1 ’ 0
0 1

The vectors @ and ¥ are a basis for the solution space of the system. In other words, any solution ¥
of the system can be written as

7 = sil + t7,

for some s, t € R.



