

INSTRUCTIONS: In questions 1 to 4 below, compute the given integrals.

Question 1 [10 pts]. $\int e^{\sqrt[3]{x}} dx$

Put

$$z = \sqrt[3]{x} \Rightarrow dz = \frac{1}{3}x^{-\frac{2}{3}} dx \Rightarrow dx = 3x^{\frac{2}{3}} dz = 3z^{2} dz,$$

where in the last step we used $x = z^3$. Then

$$\int e^{\sqrt[3]{x}} dx = 3 \int z^2 e^z dz.$$

Integrate by parts with

$$u = z^2 \Rightarrow du = 2z \, dz,$$

$$dv = e^z \, dz \Rightarrow v = e^z.$$

to get

$$3 \int z^2 e^z dz = 3(z^2 e^z - 2 \int z e^z dz) = 3z^2 e^z - 6 \int z e^z dz.$$

Integrate by parts again with

$$u = z \Rightarrow du = dz,$$

 $dv = e^z dz \Rightarrow v = e^z.$

so that

$$3z^{2}e^{z} - 6\int ze^{z} dz = 3z^{2}e^{z} - 6\left(ze^{z} - \int e^{z} dz\right) = 3z^{2}e^{z} - 6ze^{z} + 6e^{z} + C.$$

Plugging back $z = \sqrt[3]{x}$ yields

$$\int e^{\sqrt[3]{x}} dx = 3x^{\frac{2}{3}} e^{\sqrt[3]{x}} - 6\sqrt[3]{x} e^{\sqrt[3]{x}} + 6e^{\sqrt[3]{x}} + C.$$

Question 2 [10 pts]. $\int \tan^5 \theta \sec^3 \theta d\theta$

Recall that $\tan^2 \theta + 1 = \sec^2 \theta$ and that $(\sec \theta)' = \sec \theta \tan \theta$. Then

$$\int \tan^5 \theta \, \sec^3 \theta \, d\theta = \int \tan^4 \theta \sec^2 \theta \tan \theta \sec \theta \, d\theta$$
$$= \int (\sec^2 \theta - 1)^2 \sec^2 \theta \tan \theta \sec \theta \, d\theta.$$

Putting $u = \sec \theta$,

$$\int (\sec^2 \theta - 1)^2 \sec^2 \theta \tan \theta \sec \theta \, d\theta = \int (u^2 - 1)^2 u^2 \, du = \int (u^4 - 2u^2 + 1)u^2 \, du$$

$$= \int (u^6 - 2u^4 + u^2) \, du = \frac{1}{7}u^7 - \frac{2}{5}u^5 + \frac{1}{3}u^3 + C$$

$$= \frac{1}{7}(\sec \theta)^7 - \frac{2}{5}(\sec \theta)^5 + \frac{1}{3}(\sec \theta)^3 + C.$$

Question 3 [10 pts]. $\int \frac{x^2}{(4-x^2)^{\frac{3}{2}}} dx$

Put $x = 2\sin\theta$, so $dx = 2\cos\theta \,d\theta$ and

$$\int \frac{x^2}{(4-x^2)^{\frac{3}{2}}} dx = \int \frac{4\sin^2\theta}{(4-4\sin^2\theta)^{\frac{3}{2}}} 2\cos\theta \, d\theta = \frac{8}{4^{\frac{3}{2}}} \int \frac{\sin^2\theta}{\cos^2\theta} \, d\theta$$
$$= \frac{8}{8} \int \frac{1-\cos^2\theta}{\cos^2\theta} \, d\theta = \int \sec^2\theta \, d\theta - \int d\theta$$
$$= \tan\theta - \theta + C.$$

But $\theta = \arcsin \frac{x}{2}$ and $\tan \theta = \frac{x}{\sqrt{4-x^2}}$, so

$$\int \frac{x^2}{(4-x^2)^{\frac{3}{2}}} dx = \frac{x}{\sqrt{4-x^2}} - \arcsin\frac{x}{2} + C.$$

Question 4 [10 pts]. $\int x \cos^2 x \, dx$

Recalling that $\cos^2 x = \frac{1+\cos(2x)}{2}$

$$\int x \cos^2 x \, dx = \int x \frac{1 + \cos(2x)}{2} \, dx = \frac{1}{4}x^2 + \frac{1}{2} \int x \cos(2x) \, dx.$$

Integrate by parts with

$$u = x \Rightarrow du = dx,$$

 $dv = \cos(2x) dx \Rightarrow v = \frac{\sin(2x)}{2},$

to get

$$\int x \cos^2 x \, dx = \frac{1}{4}x^2 + \frac{1}{2} \int x \cos(2x) \, dx$$
$$= \frac{1}{4}x^2 + \frac{1}{2} \left(x \frac{\sin(2x)}{2} - \int \frac{\sin(2x)}{2} \, dx \right)$$
$$= \frac{1}{4}x^2 + \frac{1}{4}x \sin(2x) + \frac{1}{8}\cos(2x) + C.$$

INSTRUCTIONS: In questions 5 to 7 below, write out the form of the partial fraction decomposition of the function. *Do not* determine the numerical values of the coefficients. For example, given:

$$\frac{x+7}{x^3+4x^2+4x}$$

write

$$\frac{x+7}{x^3+4x^2+4x} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{(x+2)^2},$$

and that is the answer, i.e., you do not have to find the values of A, B and C.

Question 5 [5 pts]. $\frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^4 + 4x^2 + 4)}$

$$\frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^4 + 4x^2 + 4)} = \frac{3x^3 - x^2 + 6x - 4}{(x^2 + 1)(x^2 + 2)^2}$$
$$= \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{x^2 + 2} + \frac{Ex + F}{(x^2 + 2)^2}.$$

Question 6 [5 pts]. $\frac{x^5 + x - 1}{x^3 + 1}$

Use long division to find

$$\frac{x^5 + x - 1}{x^3 + 1} = x^2 + \frac{-x^2 + x - 1}{x^3 + 1},$$

so that

$$\frac{x^5 + x - 1}{x^3 + 1} = x^2 + \frac{-x^2 + x - 1}{x^3 + 1}$$
$$= x^2 + \frac{-x^2 + x - 1}{(x+1)(x^2 - x + 1)}$$
$$= x^2 + \frac{A}{x+1} + \frac{Bx + C}{x^2 - x + 1}.$$

Question 7 [10 pts]. Find the partial fraction decomposition of $\frac{1}{x^2-2x}$ (notice that here you do have to find the values of the constants).

Write

$$\frac{1}{x^2 - 2x} = \frac{1}{x(x-2)} = \frac{A}{x} + \frac{B}{x-2}$$
$$= \frac{A(x-2) + Bx}{x(x-2)}.$$

Hence,

$$A(x-2) + Bx = 1.$$

Plugging x=2 we find $B=\frac{1}{2}$; plugging x=0 we find $A=-\frac{1}{2}$.

INSTRUCTIONS: In questions 8 to 10, determine whether the given integral is convergent.

Question 8 [10 pts]. $\int_1^\infty \frac{2 + \cos x}{x^4} dx$

Since $-1 \le \cos x \le 1$, we have that $2 + \cos x$ is is always positive and satisfies $2 + \cos x \le 3$. Therefore

$$\int_{1}^{\infty} \frac{2 + \cos x}{x^4} \, dx \le 3 \int_{1}^{\infty} \frac{1}{x^4} \, dx.$$

The latter is a p-integral with p > 1 (i.e, p = 4), so it converges. We conclude that $\int_1^\infty \frac{2+\cos x}{x^4} dx$ converges as well.

Question 9 [10 pts]. $\int_2^\infty \frac{x+1}{\sqrt{x^4-x}} dx$

For any x on the domain of integration:

$$\frac{1}{x^4 - x} \ge \frac{1}{x^4},$$

so that

$$\int_{2}^{\infty} \frac{x+1}{\sqrt{x^{4}-x}} \ge \int_{2}^{\infty} \frac{x+1}{\sqrt{x^{4}}} dx$$
$$= \int_{2}^{\infty} \frac{1}{x} dx + \int_{2}^{\infty} \frac{1}{x^{2}} dx.$$

But $\int_2^\infty \frac{1}{x} dx$ is a *p*-integral with $p \le 1$ (i.e, p = 1), so it diverges. Hence $\int_2^\infty \frac{x+1}{\sqrt{x^4-x}} dx$ diverges as well.

Question 10 [10 pts]. $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$

Put

$$\int_0^1 \frac{\ln x}{\sqrt{x}} dx = \lim_{t \to 0^+} \int_t^1 \frac{\ln x}{\sqrt{x}} dx,$$

and integrate by parts with

$$u = \ln x \Rightarrow du = \frac{1}{x} dx,$$

 $dv = \frac{1}{\sqrt{x}} dx \Rightarrow v = 2\sqrt{x},$

to get

$$\int_{t}^{1} \frac{\ln x}{\sqrt{x}} dx = 2\sqrt{x} \ln x \Big|_{t}^{1} - 2\int_{t}^{1} \frac{1}{\sqrt{x}} dx$$
$$= 2\sqrt{x} \ln x \Big|_{t}^{1} - 4\sqrt{x} \Big|_{t}^{1} = -2\sqrt{t} \ln t - 4 + 4\sqrt{t}.$$

Since $\sqrt{t} \ln t \to 0$ as $t \to 0^+$ (use L'Hospital), we conclude that the integral is convergent.

Question 11 [10 pts]. Set up an integral for the area of the surface obtained by rotating $y = e^{x^4}$, $4 \le x \le 6$, about the x-axis. Do not evaluate the integral.

The formula is

$$S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx.$$

Since $y' = 4x^3 e^{x^4}$, we obtain

$$S = \int_{4}^{6} 2\pi e^{x^4} \sqrt{1 + (4x^3 e^{x^4})^2} \, dx.$$

Extra Credit [10 pts]. Let f be a non-negative continuous functions defined on [0,1]. Let y satisfy y''(x) - f(x)y(x) = 0 on (0,1).

Assume further that y(0) = y(1) = 0. Show that y(x) = 0 for all $x \in [0,1]$ (hint: integration by parts is useful here).

Multiply the equation by y(x) and integrate between 0 and 1 to get

$$\int_0^1 y(x)y''(x) dx - \int_0^1 f(x)(y(x))^2 dx = 0.$$

Integrate by parts the first integral with

$$u = y(x) \Rightarrow du = y'(x) dx,$$

 $dv = y''(x) dx \Rightarrow v = y'(x),$

to obtain

$$y(x)y'(x)\Big|_0^1 - \int_0^1 (y'(x))^2 dx - \int_0^1 f(x)(y(x))^2 dx = 0.$$

But

$$y(x)y'(x)\Big|_0^1 = y(1)y'(1) - y(0)y'(0) = 0,$$

since y(1) = y(0) = 0 by hypothesis. Therefore

$$-\int_0^1 (y'(x))^2 dx - \int_0^1 f(x)(y(x))^2 dx = 0,$$

or equivalently,

$$\int_0^1 (y'(x))^2 dx + \int_0^1 f(x)(y(x))^2 dx = 0.$$
 (1)

Since $f(x) \ge 0$, it follows that $f(x)(y(x))^2 \ge 0$, from which we conclude

$$\int_0^1 f(x)(y(x))^2 dx \ge 0.$$
 (2)

Also,

$$\int_0^1 (y'(x))^2 \, dx \ge 0. \tag{3}$$

But the only way that a sum of two non-negative numbers can equal zero, is if each number vanishes separately. Hence from (1), (2), and (3) we conclude that

$$\int_0^1 (y'(x))^2 dx = 0.$$

But the integral of a non-negative (continuous) function can be zero only if the function itself equals zero, so

$$(y'(x))^2 = 0$$
, which gives $y'(x) = 0$.

From this we conclude that y(x) is constant. But since y(0) = 0, this constant is necessarily zero.