MAT 155B - FALL 12 - SOLUTIONS TO ASSIGNMENT 2

We want to show that

$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} dx = \frac{\pi}{2} \ln \pi.$$

We shall provide two different solutions. The first one is longer, but more elementary. The second solution is shorter, but more involved.

Solution 1.

Let us forget about the limits for a moment and compute the definite integral. We can take the limits later. First break the integral in two:

(1)
$$\int_a^b \frac{\arctan(\pi x) - \arctan x}{x} dx = \int_a^b \frac{\arctan(\pi x)}{x} dx - \int_a^b \frac{\arctan x}{x} dx.$$

In the first integral, choose $u = \arctan(\pi x)$ and $dv = \frac{1}{x} dx$, so

$$u = \arctan(\pi x) \Rightarrow du = \frac{\pi}{1 + \pi^2 x^2} dx,$$

$$dv = \frac{1}{x} dx \Rightarrow v = \ln x.$$

It is not necessary to put an absolute value here, i.e, $\ln |x|$, since x is always positive as the domain of integration is [a, b] with a > 0. Therefore

(2)
$$\int_a^b \frac{\arctan(\pi x)}{x} dx = \arctan(\pi x) \ln x \Big|_a^b - \pi \int_a^b \frac{\ln x}{1 + \pi^2 x^2} dx.$$

Analogously, in the second integral on the right hand side of (1), choose choose $u = \arctan x$ and $dv = \frac{1}{x} dx$, so

$$u = \arctan x \Rightarrow du = \frac{1}{1+x^2} dx,$$

$$dv = \frac{1}{x} dx \Rightarrow v = \ln x,$$

and then

(3)
$$\int_a^b \frac{\arctan x}{x} dx = \arctan x \ln x \Big|_a^b - \int_a^b \frac{\ln x}{1 + x^2} dx.$$

Using (2) and (3) into (1) yields

$$\int_{a}^{b} \frac{\arctan(\pi x) - \arctan x}{x} dx = \arctan(\pi x) \ln x \Big|_{a}^{b} - \pi \int_{a}^{b} \frac{\ln x}{1 + \pi^{2} x^{2}} dx$$

$$- \left(\arctan x \ln x \Big|_{a}^{b} - \int_{a}^{b} \frac{\ln x}{1 + x^{2}} dx\right)$$

$$= \arctan(\pi b) \ln b - \arctan(\pi a) \ln a - \arctan b \ln b + \arctan a \ln a$$

$$+ \int_{a}^{b} \frac{\ln x}{1 + x^{2}} dx - \pi \int_{a}^{b} \frac{\ln x}{1 + \pi^{2} x^{2}} dx.$$

Let us now take the limits. First we need to take the limit when $a \to 0^+$:

$$\lim_{a \to 0^{+}} \int_{a}^{b} \frac{\arctan(\pi x) - \arctan x}{x} dx$$

$$= \lim_{a \to 0^{+}} \left(\arctan(\pi b) \ln b - \arctan(\pi a) \ln a - \arctan b \ln b + \arctan a \ln a \right)$$

$$+ \int_{a}^{b} \frac{\ln x}{1 + x^{2}} dx - \pi \int_{a}^{b} \frac{\ln x}{1 + \pi^{2} x^{2}} dx \right)$$

$$= \arctan(\pi b) \ln b - \arctan b \ln b + \lim_{a \to 0^{+}} \left(-\arctan(\pi a) \ln a + \arctan a \ln a \right)$$

$$+ \int_{a}^{b} \frac{\ln x}{1 + x^{2}} dx - \pi \int_{a}^{b} \frac{\ln x}{1 + \pi^{2} x^{2}} dx \right).$$

Let us compute the first two limits.

$$\lim_{a\to 0^+} (-\arctan(\pi a)\ln a + \arctan a\ln a) = \lim_{a\to 0^+} (-\arctan(\pi a) + \arctan a)\ln a.$$

Multiplying and dividing by a,

(5)
$$\lim_{a \to 0^+} \left(-\arctan(\pi a) \ln a + \arctan a \ln a \right) = \lim_{a \to 0^+} \left(\frac{-\arctan(\pi a) + \arctan a}{a} \ln a \right).$$

Using L'Hospital rule, we can compute

(6)
$$\lim_{a \to 0^{+}} \frac{-\arctan(\pi a) + \arctan a}{a} = \frac{0}{0}$$

$$\stackrel{L'H}{=} \lim_{a \to 0^{+}} \frac{(-\arctan(\pi a) + \arctan a)'}{a'}$$

$$= \lim_{a \to 0^{+}} \left(-\frac{\pi}{1 + \pi^{2} a^{2}} + \frac{1}{1 + a^{2}} \right) = 1 - \pi$$

Also using L'Hospital we find

$$\lim_{a \to 0^+} a \ln a = 0.$$

Using (6) and (7) into (5) gives

$$\lim_{a \to 0^+} (-\arctan(\pi a) \ln a + \arctan a \ln a) = (1 - \pi) \cdot 0 = 0,$$

and therefore (4) becomes

(8)
$$\lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} dx$$
$$= \arctan(\pi b) \ln b - \arctan b \ln b + \lim_{a \to 0^+} \left(\int_a^b \frac{\ln x}{1 + x^2} dx - \pi \int_a^b \frac{\ln x}{1 + \pi^2 x^2} dx \right).$$

But since

$$\lim_{a \to 0^+} \int_a^b f(x) \, dx = \int_0^b f(x) \, dx,$$

provided that the integral exists, we can write (8) as

(9)
$$\lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} dx$$
$$= \arctan(\pi b) \ln b - \arctan b \ln b + \int_0^b \frac{\ln x}{1 + x^2} dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} dx.$$

Remark 1. As usual, when you are asked to simply compute some limit/integral etc, it is implicitly assumed that such object exists. Hence here you do not have to show that the limit

(10)
$$\lim_{a \to 0^+} \left(\int_a^b \frac{\ln x}{1 + x^2} \, dx - \pi \int_a^b \frac{\ln x}{1 + \pi^2 x^2} \, dx \right)$$

exits. But now that we have covered improper integrals in class, you should be able to prove that the above integrals converge.

We want now to take the limit when $b \to \infty$, so that (9) reads

(11)
$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} dx$$

$$= \lim_{b \to \infty} \left(\arctan(\pi b) \ln b - \arctan b \ln b + \int_0^b \frac{\ln x}{1 + x^2} dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} dx \right).$$

Let us first compute

(12)
$$\lim_{b \to \infty} \left(\arctan(\pi b) \ln b - \arctan b \ln b \right) = \lim_{b \to \infty} \left(\arctan(\pi b) - \arctan b \right) \ln b$$

This is computed similarly to the previous limit $a \to 0^+$. Multiplying and dividing by b,

$$\lim_{b \to \infty} \Big(\arctan(\pi b) \ln b - \arctan b \ln b\Big) = \lim_{b \to \infty} \Big[\Big(\arctan(\pi b) - \arctan b\Big)b\Big] \frac{\ln b}{b}.$$

Since $\arctan x \to \frac{\pi}{2}$ when $x \to \infty$,

(13)
$$\lim_{b \to \infty} \left(\arctan(\pi b) - \arctan b \right) b = 0 \cdot \infty, \text{ rewrite as}$$

$$\lim_{b \to \infty} \frac{\arctan(\pi b) - \arctan b}{1/b} = \frac{0}{0} \stackrel{L'H}{=} \lim_{b \to \infty} \frac{(\arctan(\pi b) - \arctan b)'}{(1/b)'}$$

$$= \lim_{b \to \infty} \frac{\frac{\pi}{1 + \pi^2 b^2} - \frac{1}{1 + b^2}}{-\frac{1}{h^2}} = \lim_{b \to \infty} \left(-\frac{b^2}{1 + \pi^2 b^2} + \frac{b^2}{1 + b^2} \right) = \frac{\pi^2 - 1}{\pi^2}.$$

Using the L'Hospital rule once more we also find

$$\lim_{b \to \infty} \frac{\ln b}{b} = 0,$$

and therefore, combining (13), (14) and (12) gives

$$\lim_{b \to \infty} \left(\arctan(\pi b) \ln b - \arctan b \ln b \right) = \frac{\pi^2 - 1}{\pi^2} \cdot 0 = 0.$$

We conclude therefore that (11) becomes

(15)
$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} \, dx = \lim_{b \to \infty} \left(\int_0^b \frac{\ln x}{1 + x^2} \, dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} \, dx \right).$$

Consider now the integral

$$\int_0^{\pi b} \frac{\ln x}{1+x^2} \, dx.$$

Make the substitution $x = \pi u$, so that $dx = \pi du$ and

(16)
$$\int_0^{\pi b} \frac{\ln x}{1+x^2} dx = \pi \int_0^b \frac{\ln(\pi u)}{1+\pi^2 u^2} du = \pi \int_0^b \frac{\ln u}{1+\pi^2 u^2} du + \pi \ln \pi \int_0^b \frac{1}{1+\pi^2 u^2} du,$$

where in the last step we used $\ln(\pi u) = \ln \pi + \ln u$. The last integral is easily computed:

$$\int_{0}^{b} \frac{1}{1 + \pi^{2} u^{2}} du = \frac{1}{\pi} \arctan(\pi u) \Big|_{0}^{b} = \frac{1}{\pi} \arctan(\pi b) - \frac{1}{\pi} \arctan 0 = \frac{1}{\pi} \arctan(\pi b),$$

so that (16) becomes

$$\int_0^{\pi b} \frac{\ln x}{1+x^2} \, dx = \pi \int_0^b \frac{\ln u}{1+\pi^2 u^2} \, du + \ln \pi \arctan(\pi b).$$

Notice that the variable u in the integral on the right hand side of this expression is just a dummy variable of integration, so we can relabel it as x, i.e.

$$\int_0^b \frac{\ln u}{1 + \pi^2 u^2} \, du = \int_0^b \frac{\ln x}{1 + \pi^2 x^2} \, dx,$$

and write

$$\int_0^{\pi b} \frac{\ln x}{1 + x^2} dx = \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} dx + \ln \pi \arctan(\pi b),$$

or equivalently,

$$\int_0^{\pi b} \frac{\ln x}{1+x^2} dx - \pi \int_0^b \frac{\ln x}{1+\pi^2 x^2} dx = \ln \pi \arctan(\pi b).$$

Take the limit on both sides, i.e.,

(17)
$$\lim_{b \to \infty} \left(\int_0^{\pi b} \frac{\ln x}{1 + x^2} dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} dx \right) = \ln \pi \lim_{b \to \infty} \arctan(\pi b).$$

When $b \to \infty$, $\pi b \to \infty$ as well, so we have

$$\lim_{b \to \infty} \int_0^b f(x) \, dx = \lim_{b \to \infty} \int_0^{\pi b} f(x) \, dx,$$

provided that the limit exists (see remark 1), and the left hand side of (17) becomes

$$\lim_{b \to \infty} \left(\int_0^{\pi b} \frac{\ln x}{1 + x^2} \, dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} \, dx \right) = \lim_{b \to \infty} \left(\int_0^b \frac{\ln x}{1 + x^2} \, dx - \pi \int_0^b \frac{\ln x}{1 + \pi^2 x^2} \, dx \right),$$

and therefore

(18)
$$\lim_{b \to \infty} \left(\int_0^b \frac{\ln x}{1+x^2} dx - \pi \int_0^b \frac{\ln x}{1+\pi^2 x^2} dx \right) = \ln \pi \lim_{b \to \infty} \arctan(\pi b).$$

Using (18) into (15) gives

$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} \, dx = \ln \pi \lim_{b \to \infty} \arctan(\pi b).$$

Recalling that $\arctan x \to \frac{\pi}{2}$ when $x \to \infty$, we finally obtain

$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} \, dx = \frac{\pi}{2} \ln \pi.$$

Solution 2.

Make the substitution $u = \pi x$, so $du = \pi dx$. Then

$$\int_{a}^{b} \frac{\arctan(\pi x)}{x} dx = \int_{\pi a}^{\pi b} \frac{\arctan u}{u/\pi} \frac{1}{\pi} du = \int_{\pi a}^{\pi b} \frac{\arctan x}{x} dx,$$

where in the last step we used that u is a dummy variable of integration. Therefore

(19)
$$\int_{a}^{b} \frac{\arctan(\pi x) - \arctan x}{x} dx = \int_{\pi a}^{\pi b} \frac{\arctan x}{x} dx - \int_{a}^{b} \frac{\arctan x}{x} dx.$$

Breaking the first integral as

$$\int_{\pi a}^{\pi b} \frac{\arctan x}{x} \, dx = \int_{\pi a}^{b} \frac{\arctan x}{x} \, dx + \int_{b}^{\pi b} \frac{\arctan x}{x} \, dx,$$

makes (19) into

$$\int_{a}^{b} \frac{\arctan(\pi x) - \arctan x}{x} \, dx = \int_{\pi a}^{b} \frac{\arctan x}{x} \, dx + \int_{b}^{\pi b} \frac{\arctan x}{x} \, dx - \int_{a}^{b} \frac{\arctan x}{x} \, dx.$$

The first and third integrals can be combined as

$$\int_{\pi a}^{b} \frac{\arctan x}{x} dx - \int_{a}^{b} \frac{\arctan x}{x} dx = -\int_{b}^{\pi a} \frac{\arctan x}{x} dx - \int_{a}^{b} \frac{\arctan x}{x} dx$$
$$= -\int_{a}^{\pi a} \frac{\arctan x}{x} dx,$$

so that

(20)
$$\int_{a}^{b} \frac{\arctan(\pi x) - \arctan x}{x} dx = \int_{b}^{\pi b} \frac{\arctan x}{x} dx - \int_{a}^{\pi a} \frac{\arctan x}{x} dx.$$

Since the first integral contains only b in the limits of integration and the second integral only a, the limit $b \to \infty$ applies exclusively to the first integral and the limit $a \to 0^+$ exclusively to the second one.

Let us compute

$$\lim_{a \to 0^+} \int_a^{\pi a} \frac{\arctan x}{x} \, dx = \lim_{a \to 0^+} \int_1^{\pi} \frac{\arctan(az)}{z} \, dz,$$

where we made the substitution $z = \frac{x}{a}$. Now notice that since a > 0, we have

$$0 \le \frac{\arctan(za)}{z} \le \frac{\arctan(\pi a)}{z},$$

for all $1 \le z \le \pi$. Therefore

$$0 \le \int_1^{\pi} \frac{\arctan(az)}{z} dz \le \int_1^{\pi} \frac{\arctan(\pi a)}{z} dz = \arctan(\pi a) \ln \pi.$$

Since $\arctan(\pi a) \to 0$ when $a \to 0^+$, the squeeze theorem gives

$$\lim_{a \to 0^+} \int_1^{\pi} \frac{\arctan(az)}{z} = 0,$$

or yet

(21)
$$\lim_{a \to 0^+} \int_a^{\pi a} \frac{\arctan x}{x} dx = 0.$$

Now consider

(22)
$$\lim_{b \to \infty} \int_b^{\pi b} \frac{\arctan x}{x} dx = \lim_{b \to \infty} \int_1^{\pi} \frac{\arctan(bw)}{w} dw,$$

where we made the substitution $w = \frac{x}{b}$. Since for b > 0 we have

$$\frac{\arctan b}{w} \le \frac{\arctan(bw)}{w} \le \frac{\arctan(b\pi)}{w},$$

for $1 \leq w \leq \pi$, we conclude that

$$\int_{1}^{\pi} \frac{\arctan b}{w} \, dw \le \int_{1}^{\pi} \frac{\arctan(bw)}{w} \, dw \le \int_{1}^{\pi} \frac{\arctan(b\pi)}{w} \, dw.$$

Computing the integrals on the left and on the right we obtain

$$\arctan b \ln \pi \le \int_1^{\pi} \frac{\arctan(bw)}{w} dw \le \arctan(\pi b) \ln \pi,$$

and therefore, applying the squeeze theorem,

$$\lim_{b \to \infty} \int_1^{\pi} \frac{\arctan(bw)}{w} \, dw = \frac{\pi}{2} \ln \pi,$$

since

$$\lim_{b\to\infty}\arctan b=\frac{\pi}{2}, \ \ \text{and} \ \ \lim_{b\to\infty}\arctan(\pi b)=\frac{\pi}{2}.$$

Therefore (22) becomes

(23)
$$\lim_{b \to \infty} \int_b^{\pi b} \frac{\arctan x}{x} \, dx = \ln \pi \frac{\pi}{2}.$$

Using (21) and (23) into (20) gives

$$\lim_{b \to \infty} \lim_{a \to 0^+} \int_a^b \frac{\arctan(\pi x) - \arctan x}{x} \, dx = \ln \pi \frac{\pi}{2},$$

as desired.