MAT 155B - FALL 12 - EXAMPLES SECTION 8.1

Question 1. Find the length of the given curve:

(a)
$$x = \frac{y^4}{8} + \frac{1}{4y^2}, \ 1 \le y \le 2.$$

(b) $y = \sqrt{x - x^2} + \arcsin\sqrt{x}.$

SOLUTIONS.

1a. From $x = \frac{y^4}{8} + \frac{1}{4y^2}$, compute

$$\frac{dx}{dy} = \frac{1}{2}y^3 - \frac{1}{2y^3},$$

 \mathbf{SO}

$$\begin{split} 1 + \left(\frac{dx}{dy}\right)^2 &= 1 + \frac{1}{4}y^2 - \frac{1}{2} + \frac{1}{4y^6} \\ &= (\frac{1}{2}y^3 + \frac{1}{2}y^{-3})^2, \end{split}$$

and therefore

$$L = \int_{1}^{2} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2} dy} = \int_{1}^{2} \left(\frac{1}{2}y^{3} + \frac{1}{2}y^{-3}\right) dy$$
$$= \left[\frac{1}{8}y^{4} - \frac{1}{4}y^{-2}\right]_{1}^{2} = \frac{33}{16}.$$

1b. First we need to find the endpoints of the curve. The domain of $\sqrt{x-x^2}$ is given by the values of x such that $x - x^2 \ge 0$, which gives $0 \le x \le 1$. The domain of $\operatorname{arcsin} \sqrt{x}$ is given by the values of x such that \sqrt{x} is in the domain of arcsin, which again gives $0 \le x \le 1$. Therefore the curve starts at x = 0, y = 0 and ends at x = 1, $y = \frac{\pi}{2}$.

Next we compute

$$\frac{dy}{dx} = \frac{1 - 2x}{2\sqrt{x - x^2}} + \frac{1}{2\sqrt{x}\sqrt{1 - x}} = \frac{2 - 2x}{2\sqrt{x}\sqrt{1 - x}} = \sqrt{\frac{1 - x}{x}}.$$

Hence,

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{1-x}{x} = \frac{1}{x}$$

and the length of the curve is then given by

$$L = \int_0^1 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^1 \frac{1}{\sqrt{x}} \, dx = 2\sqrt{x} \Big|_0^1 = 2$$

URL: http://www.disconzi.net/Teaching/MAT155B-Fall-12/MAT155B-Fall-12.html