MAT 155B - FALL 12 - EXAMPLES SECTION 6.6

PROBLEMS.

- 1. Compute the derivative of $y = \cos^{-1}(\sin^{-1} t)$. 2. Show that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$.
- **3.** Show that:

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a}\arctan\frac{x}{a} + C.$$

SOLUTIONS.

1. Use the chain rule and the formulas

$$(\cos^{-1}t)' = -\frac{1}{\sqrt{1-t^2}}$$
 and $(\sin^{-1}t)' = \frac{1}{\sqrt{1-t^2}}$,

to find

$$(\cos^{-1}(\sin^{-1}t))' = -\frac{(\sin^{-1}t)'}{\sqrt{1 - (\sin^{-1}t)^2}} = -\frac{1}{\sqrt{1 - (\sin^{-1}t)^2}\sqrt{1 - t^2}}.$$

2. Consider a triangle rectangle (i.e., one of its angles is $\frac{\pi}{2}$) with one edge equal to x and hypotenuse equal to 1. Let θ be the angle opposite to x. Then

$$\sin \theta = \frac{x}{1} = x. \tag{1}$$

Since the sum of the angles in a triangle has to be π , the remaining angle is $\frac{\pi}{2} - \theta$, and this angle is adjacent to the side x, hence

$$\cos\left(\frac{\pi}{2} - \theta\right) = \frac{x}{1} = x.$$
(2)

But (1) gives $\sin^{-1} x = \theta$, whereas (2) gives $\cos^{-1} x = \frac{\pi}{2} - \theta$, so

$$\sin^{-1}x + \cos^{-1}x = \theta + \frac{\pi}{2} - \theta = \frac{\pi}{2}$$

as desired.

3. Write:

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a^2} \int \frac{dx}{1 + \frac{x^2}{a^2}} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2}$$

Make the substitution $u = \frac{x}{a}$, so that dx = a du and then

$$\frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a^2} \int \frac{a \, du}{1 + u^2} = \frac{1}{a} \int \frac{du}{1 + u^2}.$$

Use $\int \frac{du}{1+u^2} = \arctan u + C$ to get

$$\frac{1}{a} \int \frac{du}{1+u^2} = \frac{1}{a} \arctan u + C = \frac{1}{a} \arctan \frac{x}{a} + C.$$

URL: http://www.disconzi.net/Teaching/MAT155B-Fall-12/MAT155B-Fall-12.html