MAT 155B - FALL 12 - EXAMPLES SECTION 6.2*

1. Find *x*:

(a) $\ln(3x+11) = 7$ (b) $e^{2x} - 5e^x + 6 = 0$

2. Compute the derivative of the given functions:

(a) $y = \ln(\sin x + x)$ (b) $g(z) = \ln \ln \ln(z)$ (c) $f(y) = e^{-\frac{y^2}{\sigma^2}}$ (d) $y = e^{e^x}$

3. Solve the following inequalities for x:

- (a) $\ln(x+3) > 2$ (b) $e^{7x-2} < 9$ (c) $\ln(2x+8) \ln(x+1) > 0$
- 4. What is the domain of $\ln \frac{2x+8}{x+1}$?

Solutions.

1a. Take ln on both sides and use $e^{\ln x} = x$ to find

$$e^{\ln(3x+11)} = e^7 \Rightarrow 3x + 11 = e^7 \Rightarrow x = \frac{e^7 - 11}{3}.$$

1b. Factor $e^{2x} - 5e^x + 6 = 0$ as $(e^x - 2)(e^x - 3) = 0$. Hence the solution s are $e^x - 2 = 0 \Rightarrow x = \ln 2$, and $e^x - 3 = 0 \Rightarrow x = \ln 3$.

Remark 1. If we had, say, $e^{2x} - e^x - 6 = 0$, factorization gives $(e^x + 2)(e^x - 3) = 0$ and

$$e^x + 2 = 0 \Rightarrow x = \ln(-2)$$
 and $e^x - 3 = 0 \Rightarrow x = \ln 3$

But $\ln(-2)$ is undefined, so in this case the only solution would be $x = \ln 3$.

2a. Use the chain rule and remember that $(\ln x)' = \frac{1}{x}$, so

$$y' = \frac{1}{\sin x + x} (\cos x + 1)$$

2b. Apply the chain rule consecutively to find

$$g'(z) = \frac{1}{\ln\ln(z)} (\ln\ln(z))' = \frac{1}{\ln\ln(z)} \frac{1}{\ln(z)} (\ln(z))' = \frac{1}{\ln\ln(z)} \frac{1}{\ln(z)} \frac{1}{z}$$

2c. Notice that the variable is y, so σ is a constant. Then $f'(y) = -2\frac{y}{\sigma^2}e^{-\frac{y^2}{\sigma^2}}$.

Remark 2. The function $f(x) = e^{-\frac{x^2}{\sigma^2}}$ is known as Gaussian or Normal Distribution, and it is of extreme importance in statistics and applied sciences; in fact, it is used in almost any application which requires data analysis. To know more about it check a book on Statistics or google it.

EXAMPLES SECTION 6.2*

2d. Use the chain rule:

$$y' = (e^{e^x})' = e^{e^x}(e^x)' = e^{e^x}e^x = e^{e^x+x}$$

3a. Since exp is a monotone increasing function:

$$\ln(x+3) > 2 \Rightarrow x+3 > e^2 \Rightarrow x > e^2 - 3.$$

3b. Analogously, since ln is monotone increasing,

$$e^{7x-2} < 9 \Rightarrow 7x - 2 < \ln 9 \Rightarrow x < \frac{\ln 9 + 2}{7}$$

3c. Write $\ln(2x+8) - \ln(x+1) = \ln \frac{2x+8}{x+1}$, thus

$$\ln \frac{2x+8}{x+1} > 0 \Rightarrow \frac{2x+8}{x+1} > e^0 = 1 \Rightarrow 2x+8 > x+1 \Rightarrow x > -7$$

The condition x > -7 is not sufficient, since we need to restrict x to values which are in the domain of the function $f(x) = \ln(2x+8) - \ln(x+1)$; for example, x = -5 satisfies x > -7 but f(-5) is undefined. Hence we need 2x + 8 > 0, giving x > -4, and x + 1 > 0, giving x > -1. Combining x > -7, x > -4 and x > -1 we conclude that $\ln(2x+8) - \ln(x+1) > 0$ is satisfied by x > -1.

Remark 3. In the above example, we see that, for example, -5 is not in the domain of $f(x) = \ln(2x+8) - \ln(x+1)$, since f(-5) would give $\ln(-2) - \ln(-4)$, and both these terms are undefined. However, if we write

$$\ln(2x+8) - \ln(x+1) = \ln\frac{2x+8}{x+1}$$

and let $g(x) = \ln \frac{2x+8}{x+1}$ then $g(-5) = \ln \left(\frac{-2}{-4}\right) = \ln \frac{1}{2}$ which is well defined. What is going on? The point here is that when one writes a formula like

$$\ln X - \ln Y = \ln \frac{X}{Y}$$

it is assumed that both sides of this expression are well defined, i.e., that X, Y, and $\frac{X}{Y}$ are all in the domain of ln. If that is not the case then the formula cannot be applied.

3d. The domain of $\ln \frac{2x+8}{x+1}$ is the set of x-values such that $\frac{2x+8}{x+1} > 0$. A fraction is positive if both numerator and denominator are positive, i.e.,

$$2x + 8 > 0 \text{ and } x + 1 > 0,$$
 (1)

or if both numerator and denominator are negative, i.e.

$$2x + 8 < 0 \text{ and } x + 1 < 0. \tag{2}$$

Condition (1) gives x > -4 and x > -1, hence x > -1; condition (2) gives x < -4 and x < -1, hence x < -4. Therefore the domain of $\ln \frac{2x+8}{x+1}$ is

$$(-\infty, -4) \cup (-1, \infty).$$

URL: http://www.disconzi.net/Teaching/MAT155B-Fall-12/MAT155B-Fall-12.html