
MAT 155B - FALL 12 - EXAMPLES SECTION 11.9

Question 1: Find a power series representation for the functions below.

(a)f(x) =
x

(1 + 4x)2
(b)f(x) = ln

(1 + x

1− x

)

Question 2: Evaluate the integral as a power series.

(a)

∫

ln(1− t)

t
dt (b)

∫ 0.1

0
x arctan(3x)dx up to six decimal places

Solutions.

(1a) When you want to find a power series representation of functions involving 1
(a+bx)ℓ

, with a, b

and ℓ constants, the idea is to use derivatives and the geometric series. We can at first ignore the x

term on the numerator, since it can be multiplied later on, i.e., after obtaining the power series for
1

(1+4x)2 .

First notice that

1

(1 + 4x)2
= −

1

4

d

dx

( 1

1 + 4x

)

.

How do we know the correct constant in front of the derivative, i.e., how did we figure out the factor
−1

4? To see why the above equality is true, start with 1
1+4x and then take derivatives

d

dx

( 1

1 + 4x

)

= −
4

(1 + 4x)2
⇒

1

(1 + 4x)2
= −

1

4

d

dx

( 1

1 + 4x

)

.

Now we use the geometric series 1
1−r

=
∑

∞

n=0 r
n with r = −4x:

1

1 + 4x
=

∞
∑

n=0

(−1)n4nxn,

which converges for |x| < 1
4 since we must have |r| < 1. Therefore

1

(1 + 4x)2
= −

1

4

d

dx

( 1

1 + 4x

)

= −
1

4

d

dx

∞
∑

n=0

(−1)n4nxn = −
1

4

∞
∑

n=0

(−1)n4n
d

dx
xn

= −
1

4

∞
∑

n=0

(−1)n4nnxn−1 =

∞
∑

n=0

(−1)n+14n−1nxn−1 =

∞
∑

n=1

(−1)n+14n−1nxn−1.

In the last step we started the sum at n = 1 because the n = 0 term vanishes. Now we can multiply
by x:

x

(1 + 4x)2
= x

∞
∑

n=1

(−1)n+14n−1nxn−1 =

∞
∑

n=1

(−1)n+14n−1nxn.

1
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Remark: Suppose you were looking for a power series for 1
(1−8x)3

. Then you would differentiate
1

1−8x twice:

d

dx

( 1

1− 8x

)

=
8

(1− 8x)2
,

d2

dx2

( 1

1− 8x

)

=
d

dx

( 8

(1− 8x)2

)

=
128

(1− 8x)3
.

Therefore

1

(1− 8x)3
=

1

128

d2

dx2

( 1

1− 8x

)

.

The term in parenthesis on the right hand side can then be expanded as a geometric series, and after

that you can take the derivative d
2

dx2 as in the example above, except that in this case you would
have to differentiate twice.

(1b) Use the property

ln
(1 + x

1− x

)

= ln(1 + x)− ln(1− x).

We will see in class that

ln(1 + x) =
∞
∑

n=1

(−1)n−1x
n

n
, |x| < 1.

Replace x by −x in the above formula to find

ln(1− x) = −
∞
∑

n=1

xn

n
, |x| < 1.

Putting these two formulas together we get

ln
(1 + x

1− x

)

= ln(1 + x)− ln(1− x) =
∞
∑

n=1

(−1)n−1x
n

n
+

∞
∑

n=1

xn

n
=

∞
∑

n=1

(

(−1)n−1x
n

n
+

xn

n

)

.

Now notice that the term in parenthesis equals zero if n is even and 2xn

n
if n is odd. So

ln
(1 + x

1− x

)

= 2

∞
∑

n = 1

n odd

xn

n
.

Summing only over n odd is the same as summing over all n with n replaced by 2n+ 1, so

ln
(1 + x

1− x

)

= 2

∞
∑

n=0

x2n+1

2n+ 1
=

∞
∑

n=0

2

2n + 1
x2n+1.

(2a) Again, use the formula

ln(1− t) = −

∞
∑

n=1

tn

n
, |t| < 1.

Then

ln(1− t)

t
= −

1

t

∞
∑

n=1

tn

n
= −

∞
∑

n=1

tn−1

n
.
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Integrating:
∫

ln(1− t)

t
dt = −

∫

(

∞
∑

n=1

tn−1

n

)

dt = −
∞
∑

n=1

∫

tn−1

n
dt.

Recalling that
∫

tn−1dt =
tn

n
,

we get
∫

ln(1− t)

t
dt = −

∞
∑

n=1

∫

tn−1

n
dt = C −

∞
∑

n=1

tn

n2
,

where C is a constant of integration.

(2b) We will see in class that

arctan x =
∞
∑

n=0

(−1)nx2n+1

2n + 1
,

for |x| ≤ 1. It follows that

arctan(3x) =

∞
∑

n=0

(−1)n32n+1x2n+1

2n+ 1
,

and this converges for |x| ≤ 1
3 . Hence

x arctan(3x) = x

∞
∑

n=0

(−1)n32n+1x2n+1

2n+ 1
=

∞
∑

n=0

(−1)n32n+1x2n+2

2n+ 1
.

Integrate to get:
∫ 0.1

0
x arctan(3x)dx =

∫ 0.1

0

(

∞
∑

n=0

(−1)n32n+1x2n+2

2n+ 1

)

dx =

∞
∑

n=0

∫ 0.1

0

(−1)n32n+1x2n+2

2n+ 1
dx.

Since
∫ 0.1

0
x2n+2dx =

x2n+3

2n+ 3

∣

∣

∣

0.1

0
=

(0.1)2n+3

2n+ 3
=

1

(2n+ 3)102n+3
,

we obtain
∫ 0.1

0
x arctan(3x)dx =

∞
∑

n=0

(−1)n32n+1

(2n+ 1)(2n + 3)102n+3
.

Notice that this is an alternating series with bn = 32n+1

(2n+1)(2n+3)102n+3 . We can now use remainder

estimates for the alternating series to get:

|Rn| ≤ bn+1 =
32n+3

(2n+ 3)(2n + 5)102n+5
.

We want this to be of the order 10−6. Since there is a n appearing in several places, it’s cumbersome
to solve bn+1 ≤ 10−6 directly for n. But noticing that

32n+3

(2n + 3)(2n + 5)102n+5
≤

32n+3

102n+5
≤

32n+5

102n+5
=

( 3

10

)2n+5
,
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we see that it is enough to have
( 3

10

)2n+5
≤ 10−6.

Playing with n values we see that for n = 4 we get
( 3

10

)13
= 0.00000016.

Hence we can sum up to n = 4 to obtain
∫ 0.1

0
x arctan(3x)dx ≈

4
∑

n=0

(−1)n32n+1

(2n + 1)(2n + 3)102n+3
= 0.000982662,

where to obtain the numerical value a calculator has been used.
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