MAT 155B - FALL 12 - EXAMPLES SECTION 11.9

Question 1: Find a power series representation for the functions below.

(a)f(x) = m

Question 2: Evaluate the integral as a power series.

1—|—x)
1—z

(b)f(x) = In

In(1 —t) 0-1 . )
(a) fdt (b) xarctan(3z)dz up to six decimal places
0

Solutions.

(la) When you want to find a power series representation of functions involving m, with a, b

and ¢ constants, the idea is to use derivatives and the geometric series. We can at first ignore the x

term on the numerator, since it can be multiplied later on, i.e., after obtaining the power series for
1

(1+4z)2 "
First notice that

1 ~1d < 1 >
(14+4x)2  4dx\1+4z/
How do we know the correct constant in front of the derivative, i.e., how did we figure out the factor
—%? To see why the above equality is true, start with ﬁ and then take derivatives

d ( 1 ) B 4 N 1 ~1d ( 1 >
de\1+4z)  (1+42)? = (1+4z)? 4ddz\1+4z/
Now we use the geometric series ﬁ =300 o r" with r = —4a:
o0

Z n4n n

which converges for |z| < % since we must have |r| < 1. Therefore

1 1d/ 1 1d &
i _ - v 1 n4n n:__ n4n g
(1+ 4x)? 4d3:(1+43:> 4d:EnZ:;)( Z
1 oo 0o
_ _Z Z(_l)n4nnxn—l _ Z(_l)n+l4n—1nxn—l _ Z(—l)n+14n_ln3}n_l.
n=0 n=0 n=1

In the last step we started the sum at n = 1 because the n = 0 term vanishes. Now we can multiply
by x:

0o 0o
(1 - 4 Z n+14n—1nxn—1 _ Z(_l)n+l4n—1nxn
II)‘

n=1
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Remark' Suppose you were looking for a power series for m. Then you would differentiate
8z 8 twice:
d 1 8
%(1 —83:) T (1-82)Y
d? 1 d 8 128
@(m) B %((1 - 8a:)2) T (1= 8a)¥
Therefore

11 & ( 1 )
(1—8x)>  128dx2\1—8z/
The term in parenthesis on the right hand side can then be expanded as a geometric series, and after

that you can take the derivative % as in the example above, except that in this case you would

have to differentiate twice.

(1b) Use the property

In (iti) =In(1+2z)—In(1l —=x).

We will see in class that
o

In(l+4+z) = g -1 12" 1.
Replace & by —z in the above formula to find

o

ln(l—a:):—z%, lz] < 1.

n=1
Putting these two formulas together we get

n

() it -t = S 5SS (L )

n=1

Now notice that the term in parenthesis equals zero if n is even and 2 T if n is odd. So

1+x = "
In ( > =2 —.
1—=z Z n

n=1
n odd

Summing only over n odd is the same as summing over all n with n replaced by 2n + 1, so
2n+1

1+x >
1 < >:2 _ 22t
12 ZZn—I—l 7;]2714—1

(2a) Again, use the formula

oo n

t
ln(l—t):—zg, t] < 1.

n=1
Then
0 tn—l

R R 0

n=1
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Rt [ (= n [ e

tn
/t”—ldt =,
n

/ln(l—t Z/t“ 1dt o Z

where C' is a constant of integration.

Integrating:

Recalling that

we get

(2b) We will see in class that
st (_1)n$2n+1

arctanx = _—
nz_:o n+1 7’

for |z| < 1. Tt follows that
0 _1)n32n+1x2n+1

arctan(3z) = Z (

= 2n+1
and this converges for [z| < . Hence
[ee]
_1)n32n+1$2n+1 n32n+1 2n+2
rarctan(3z) =z =
(32) nZ::O 2n +1 nZ% 2n +1

Integrate to get:

01 01, 22 (=1)n32n+l2n+2 ©0 0.1 (_1\ng2n+1,2n+2
/ x arctan(3z)dx :/ (Z (=)™ )d:p _ Z/ (=13 .
0 0 0

= 2n+1 o 2n+1
Since
/0.1 2n+2d$ 2n+3 _ (0‘1)2714-3 _ 1
0 2n + 3lo 2n + 3 (2n + 3)102n+3°
we obtain
0.1 o0 (_1)n32n+1
/ x arctan(3z)dr = Z Gn T D@1 310
0 n=0
Notice that this is an alternating series with b, = e +1)(§:L:;)102n . We can now use remainder
estimates for the alternating series to get:
32n+3
R, <0 = )
|| < boi (2n + 3)(2n + 5)102n+5

We want this to be of the order 107%. Since there is a n appearing in several places, it’s cumbersome
to solve b, 1 < 107° directly for n. But noticing that

32n+3 32n+3 32n+5 3\ 2n+5
< < = [ —
(2n + 3)(2n + 5)1027+5 = 102745 = 102n+5 (10)

9
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we see that it is enough to have

3\ 2n+5 _6
— <107°.
(@) <
Playing with n values we see that for n = 4 we get

(3) L 0.00000016.

10
Hence we can sum up to n = 4 to obtain
0.1 4 (_1)n32n+1
tan(3x)dx ~ = 0.000982662
/0 warctan(3z)d nz::o (2n 4+ 1)(2n + 3)1027+3 ’

where to obtain the numerical value a calculator has been used.
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