
MAT 155B - FALL 12 - EXAMPLES SECTION 11.10

Question 1: Find the Maclaurin series for f(x).

(a)f(x) = sin(πx) (b)f(x) = ex + e2x (c)f(x) =
x√

4 + x2

Question 2: Find the Taylor series for f(x) centered at the given value of a.

(a)f(x) =
1√
x
, a = 9 (b)f(x) = ex, a = 3 (c)f(x) = x4 − 3x2 + 1, a = 1

Question 3: Use series to evaluate the limit

lim
x→0

sinx− x+ 1
6x

3

x5

Question 4: Find the sum of the series.

(a)
∞
∑

n=0

54n

n!
(b)

∞
∑

n=2

54n

n!
(c)

∞
∑

n=1

(−1)n−1 3n

n5n
(d)

∞
∑

n=0

(−1)nπ2n+1

42n+1(2n+ 1)!

Solutions.

For all questions, recall the formula for the Taylor series centered at a:

f(x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n (1)

The Maclaurin series is simply the Taylor series with a = 0.

(1a) Since we want the Maclaurin series, we will use formula (1) with a = 0. For f(x) = sin(πx),
compute (you need to remember the basic values of sine and cosine, e.g., sinπ etc).

f(0) = sin(0) = 0

f ′(x) = π cos(πx) ⇒ f ′(0) = π

f ′′(x) = −π2 sin(πx) ⇒ f ′′(0) = 0

f ′′′(x) = −π3 cos(πx) ⇒ f ′′′(0) = −π3

f ′′′′(x) = π4 sin(πx) ⇒ f ′′′′(0) = 0

So after four derivatives, we get back the function sin(πx), multiplied by a power of π. And every
time a derivative is taken, there is an extra factor of π popping out. Following the pattern, we see
that the nth derivative is zero if n is even, and ±πn is n is odd, with the sign being “plus” if n is
1, 5, 9, . . . and “minus” if n is 3, 7, 11, . . . . We can summarize this by the formulas

f (2n)(0) = 0, for all n

f (2n+1)(0) = (−1)nπ2n+1, for all n
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Using formula (1) we then find

∞
∑

n=0

(−1)nπ2n+1

(2n + 1)!
x2n+1

The ratio test shows that the radius of convergence is R = ∞.
There is quicker way of doing this problem. The Maclaurin series for sinx is

sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

We can then simply replace x by πx in the above formula to find the answer.

Remark: In most problems, it is easier to use the formulas that we already know for the Taylor
and Maclaurin series of commonly used functions, and therefore for the remaining problems we will
make use of this shortcut whenever possible. Nevertheless, it is very important that you know how
to use formula (1).

(1b) Recall

ex =

∞
∑

n=0

xn

n!

with radius of convergence R = ∞. Replacing x by 2x we find

e2x =

∞
∑

n=0

2nxn

n!

Adding we find

ex + e2x =
∞
∑

n=0

2n + 1

n!
xn

with R = ∞.

(1c) Notice that

f(x) =
x√

4 + x2
= x(4 + x2)−

1

2 =
x

2

(

1 +
(x

2

)2)−
1

2

Recall the binomial series

(1 + x)k =
∞
∑

n=0

k(k − 1)(k − 2) · · · (k − n+ 1)

n!
xn

with radius of convergence R = 1. In our case k = −1
2 , and instead of x we have

(

x

2

)2
= x

2

4 , therefore

(1 + x)−
1

2 =

∞
∑

n=0

(−1
2)((−1

2 )− 1)((−1
2 )− 2) · · · ((−1

2)− n+ 1)

n!

(x2

4

)n
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Notice that

((−1

2
)− 1) =

−1− 2

2
= −3

2

((−1

2
)− 2) =

−1− 4

2
= −5

2

((−1

2
)− n+ 1) =

−1− 2n+ 2

2
= −2n− 1

2
so

(−1

2
)((−1

2
)− 1)((−1

2
)− 2) · · · ((−1

2
)− n+ 1) = (−1)n

1 · 3 · 5 · · · (2n − 1)

2n

Using this in the formula for the binomial series, writing 1
4n = 1

22n and multiplying by the extra x

2 ,
we find

x√
4 + x2

=
1

2
x+

∞
∑

n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

n!23n+1
x2n+1

Since the radius of convergence for the binomial series is one, in our case we have
∣

∣

∣

∣

x2

4

∣

∣

∣

∣

< 1

and so the radius of convergence is R = 2.

(2a) Write

1√
x
= x−

1

2 = (x− 9 + 9)−
1

2 =
(

9(1 +
x− 9

9
)
)

−
1

2

=
1

3
(1 +

x− 9

9
)−

1

2

Now simply use the binomial series (1 + x)−
1

2 replacing x by x−9
9 . We find

1√
x
=

1

3
+

∞
∑

n=1

(−1)n
1 · 3 · 5 · · · (2n − 1)

n!2n32n+1
(x− 9)n

with radius of convergence
∣

∣

∣

∣

x− 9

9

∣

∣

∣

∣

< 1 ⇒ |x− 9| < 9

so R = 9.

(2b) Let’s use formula (1) with f(x) = ex and a = 3. Since the derivative of ex is itself, we have

f (n)(x) = ex for any n. Hence

f (n)(3) = e3

Therefore

ex =

∞
∑

n=0

e3

n!
(x− 3)n

with radius of convergence R = ∞.
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(2c) Use formula (1) with f(x) = x4 − 3x2 + 1 and a = 1. Compute

f ′(x) = 4x3 − 6x ⇒ f ′(1) = −2

f ′′(x) = 12x2 − 6 ⇒ f ′′(1) = 6

f ′′′(x) = 24x ⇒ f ′′′(1) = 24

f ′′′′(x) = 24 ⇒ f ′′′′(1) = 24

f (n)(x) = 0 for n ≥ 5

Hence

x4 − 3x2 + 1 = −1− 2(x− 1) + 3(x− 1)2 + 4(x− 1)3 + (x− 1)4

Since this is a finite sum, R = ∞.

Remark: The Taylor series of a polynomial is always a finite sum, since derivatives eventually
vanish, and then R = ∞.

(3) Recall the Taylor series for sinx

sinx =
∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

So

sinx− x+ 1
6x

3

x5
=

∑

∞

n=0
(−1)n

(2n+1)!x
2n+1 − x+ 1

6x
3

x5

=
x− 1

3!x
3 + 1

5!x
5 +

∑

∞

n=3
(−1)n

(2n+1)!x
2n+1 − x+ 1

6x
3

x5

=

1
120x

5 +
∑

∞

n=3
(−1)n

(2n+1)!x
2n+1

x5

=
1

120
+

∞
∑

n=3

(−1)n

(2n+ 1)!
x2n+1−5

Where we used 3! = 6 and 5! = 120. Notice that since the sum now starts at n = 3, the power on
x2n+1−5 is always positive, hence limx→0 x

2n+1−5 = 0. Therefore

lim
x→0

sinx− x+ 1
6x

3

x5
=

1

120

(4a) Since

ex =

∞
∑

n=0

xn

n!

we have

ex
4

=

∞
∑

n=0

x4n

n!



EXAMPLES SECTION 11.10 5

So, plugging x = 5 we find
∞
∑

n=0

54n

n!
= e5

4

= e625

(4b) This is the same sum as in (4a), except that it starts at n = 2, so

e625 =

∞
∑

n=0

54n

n!
= 5 +

54

1!
+

∞
∑

n=2

54n

n!

and then
∞
∑

n=2

54n

n!
= e625 − 5− 625 = e625 − 630

(4c) Recall

ln(1 + x) =

∞
∑

n=1

(−1)n−1x
n

n

Plugging x = 3
5 we find

∞
∑

n=1

(−1)n−1 3n

n5n
= ln(1 +

3

5
) = ln(

8

5
)

(4d) Since

sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

plugging x = π

4 we get

∞
∑

n=0

(−1)nπ2n+1

42n+1(2n+ 1)!
= sin

π

4
=

√
2

2
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