
MAT 155B - FALL 12 — SECTIONS 04 AND 13

SOLUTIONS TO THE PRACTICE TEST 3

Question 1. Solve the differential equation

y′ = 2y(y − 2).

Write y′ as dy
dx
, move all terms involving y to left hand side and all terms involving x to the right

hand side, and integrate to get
∫

dy

y(y − 2)
=

∫

2 dx.

To compute the y-integral, use partial fractions to get

1

y(y − 2)
=

1

2

( 1

y − 2
− 1

y

)

, (1)

so that

ln

∣

∣

∣

∣

y − 2

y

∣

∣

∣

∣

= 4x+ C =⇒ y − 2

y
= Ce4x. (2)

Solving for y we find

y =
2

(1− Ce4x)
.

In doing the integral, we assumed that y 6= 0 and y 6= 2. y = 2 is also a solution, but this is already
included in the above expression (when C = 0). y = 0 is a solutions as well, as we can verify by
plugging it into the equation.

Question 2. What are the constant solutions of the differential equation

y′ − (y2 + y3) arctan(y + π) = 0 ?

Solution.
The constant solutions are those such that y′ = 0. Writing

y′ = (y2 + y3) arctan(y + π),

we see that the constant solutions are found by solving

(y2 + y3) arctan(y + π) = y2(1 + y) arctan(y + π) = 0.

We then find y = 0, y = −1 and y = −π.

Question 3. Show that the function y(x) = xe−2x is a solution of the initial value problem
{

y′′ + 4y′ + 4y = 0,

y(0) = 0, y′(0) = 1.

Solution. Compute the derivatives to find

y′ = e−2x − 2xe−2x,

y′′ = −4e−2x + 4xe−2x.
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Therefore

y′′ + 4y′ + 4y = (−4e−2x + 4xe−2x) + 4(e−2x − 2xe−2x) + 4xe−2x

= (−4 + 4)e−2x + (4− 8 + 4)xe−2x

= 0,

verifying the differential equation. For the initial conditions, plug in zero to get

y′(0) = 1,

y(0) = 0.

verifying the initial conditions as well.

Question 4. Determine whether each of the following sequences converges or diverges. You do not
have to determine the limit if the sequence converges.

(a) an =
(−1)nn4

3n4 + 1

(b) an = 1 +
sin nπ

2 lnn

n

(c) a1 = 1, an+1 =
an + 9

2

(d) an = cos
(2n + 1)π

2

Solution.

(a). Write

an =
(−1)nn4

3n4 + 1
=

(−1)nn4/n4

3n4/n4 + 1/n4
= (−1)n

( 1

3 + 1
n4

)

.

As n → ∞, the term in parenthesis approaches 1
3 , whereas the entire expression keeps jumping from

near 1
3 (n even) to near −1

3 (n odd). Therefore the sequence diverges.

(b). Since ln
n
→ 0 (use L’Hospital), and | sin nπ

2 | ≤ 1, we have that
∣

∣

∣

sin nπ
2 lnn

n

∣

∣

∣
→ 0.

Recall that if |an| → 0 then an → 0, hence

sin nπ
2 lnn

n
→ 0,

and we conclude that the sequence converges.

(c). Since a1 ≤ 9, we can argue inductively: if an ≤ 9 then

an+1 =
an + 9

2
≤ 9 + 9

2
= 9,

and therefore we conclude that an ≤ 9 for all n. Since an ≥ 0, this sequence is bounded. The
sequence is also increasing since

an+1 =
an + 9

2
≥ an + an

2
= an.

Therefore it converges by the monotonic sequence theorem.
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(d). (2n+1)π
2 is always an odd multiple of π

2 , hence an = cos (2n+1)π
2 = 0 for every n, and the sequence

converges.

Question 4. Find the limit of the sequences below.

(a) an =
n

1 +
√
4n2 + 1

(b) an =
5n

n!

(c) an =
ln(64n2 + 1)− ln(n2 + n)

4

(d) an = n(1− e
1

n )

Solution.

(a). Write the sequence as

an =
n

1 +
√
4n2 + 1

=
1

1
n
+

√

4 + 1
n2

.

So an → 1
0+

√
4+0

= 1
2 .

(b). Notice that

0 ≤ 5n

n!
=

5 · 5 · 5 · 5 · 5 · · · 5
1 · 2 · 3 · 4 · 5 · · · n,

where 5 multiplies itself n times on the numerator. But

0 ≤ 5n

n!
=

5 · 5 · 5 · 5 · 5 · · · 5
1 · 2 · 3 · 4 · 5 · · · n

=
(5 · 5 · 5 · 5 · 5
1 · 2 · 3 · 4 · 5

)( 5 · 5 · 5 · · · 5
6 · 7 · 8 · · · · (n− 1)

) 5

n

≤
(5 · 5 · 5 · 5 · 5
1 · 2 · 3 · 4 · 5

)

.
5

n

Since this last expression goes to zero, we conclude that an → 0 by the squeeze theorem.

(c). Write the sequence as

an =
ln(64n2 + 1)− ln(n2 + n)

4
=

1

4
ln

64n2 + 1

n2 + n

=
1

4
ln

64 + 1
n2

1 + 1
n

,

so that

an → 1

4
ln

64 + 1
∞

1 + 1
∞

=
1

4
ln

64 + 0

1 + 0

=
1

4
ln 26 =

3

2
ln 2.
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(d). We have

lim
n→∞

an = lim
n→∞

n(1− e
1

n ) = lim
n→∞

1− e
1

n

1
n

.

Letting x = 1
n
, this is the same as

lim
x→0

1− ex

x
=

0

0

L′H
= lim

x→0

0− ex

1
= −1.

Question 5. Determine whether each of the following series converges or diverges. You do not have
to compute the sum if the series converges.

(a)

∞
∑

n=1

(−1)n

(b)

∞
∑

n=1

1

3n − 2n

(c)
∞
∑

n=1

tan2
(

1

n

)

(d)

∞
∑

n=1

3n√
4n + 1

(e)
∞
∑

n=1

n

e(−1)n sinn + n4

(f)

∞
∑

n=1

(−1)n−1

ln(n+ 4)

Solution.

(a). It diverges, since the sequence of partial sums alternates between −1 and 0 indefinitely.

(b). Since 1
3n−2n ≥ 0, we can use the limit comparison test. Let us compare with 1

3n :

lim
n→∞

1
3n−2n

1
3n

= lim
n→∞

1

1− (2/3)n
= 1 6= 0.

Since
∞
∑

n=1

1

3n

converges because it is a geometric series with r = 1
3 , we conclude that

∞
∑

n=1

1

3n − 2n

converges.
We could also have used the comparison test:

0 ≤ 1

3n − 2n
=

1

2n(3
n

2n − 1)
≤ 2

2n
,
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and
∞
∑

n=1

2

2n
= 2

∞
∑

n=1

1

2n

converges since it is a geometric series with r = 1
2 .

(c). This is a series of positive terms. Let us compare it with

∞
∑

n=1

1

n2
,

which converges. Compute

lim
n→∞

tan2
(

1
n

)

1
n2

= lim
n→∞

sin2
(

1
n

)

cos2
(

1
n

)

1
n2

= lim
n→∞

sin2
(

1
n

)

1
n2

,

where we used that cos2
(

1
n

)

→ 1. Letting x = 1
n
the limit becomes

lim
n→0

=
sin2 x

x2
= 1.

where in the last step we used L’Hospital. Therefore
∞
∑

n=1

tan2
(

1

n

)

converges by the limit comparison test.

(d). Since

3n√
4n + 1

=
(3/2)n

√

1 + 1
4n

→ ∞, (3)

the series diverges by the divergence test.

(e). This is a series of positive terms, so we can apply the comparison test. Since the exponential is
always positive, we have

n

e(−1)n sinn + n4
≤ n

n4
=

1

n3
.

Since
∞
∑

n=1

1

n3

is a p-series with p > 1, it converges, and therefore
∞
∑

n=1

n

e(−1)n sinn + n4

converges as well.

(f). We want to apply the alternating series test. Write the series as

∞
∑

n=1

(−1)n−1

ln(n+ 4)
=

∞
∑

n=1

(−1)n−1bn,
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where bn = 1
ln(n+4) . We have that bn > 0 and bn → 0 as n → ∞. lnx is an increasing function, hence

1
ln(n+4) is decreasing, and therefore by the alternating series test the series converges.

Question 6. Determine the sum of the following convergent series:
∞
∑

n=1

1

4n2 − 9

Solution. Use partial fractions to write

1

4n2 − 9
=

1

6

( 1

2n− 3
− 1

2n+ 3

)

.

Now write
∞
∑

n=1

1

4n2 − 9
=

1

6

∞
∑

n=1

( 1

2n− 3
− 1

2n+ 3

)

=
1

6

∞
∑

n=1

( 1

2n− 3
− 1

2(n+ 3)− 3

)

.

Let an = 1
2n−3 . Then we get

∞
∑

n=1

1

4n2 − 9
=

1

6

∞
∑

n=1

(

an − an+3

)

.

From this expression, we see that for n > 3, the second term in each pair gets canceled by the first
term in the pair three steps later. For example, when n = 4 the term a4 cancels with the term a1+3

which comes from an+3 when n = 1; when n = 5 the term a5 cancels with the term a2+3 which
comes from an+3 when n = 2; and so on. Hence only the terms a1, a2 and a3 are left, so that

1

6

∞
∑

n=1

(

an − an+3

)

=
1

6

(

a1 + a2 + a3

)

=
1

6

(

− 1 + 1 +
1

3

)

=
1

18
.

Question 7. Find all values of p for which the following series converges:
∞
∑

n=1

np sin2
(

1

n

)

Solution. This is a series of positive terms, so our usual tests can be applied. Let us compare with
∞
∑

n=1

np

(

1

n

)2

=
∞
∑

n=1

1

n2−p
(∗)

This series converges if 2− p > 1, i.e. p < 1, and diverge otherwise. Compute

lim
n→∞

np sin2
(

1
n

)

1
n2−p

= lim
n→∞

sin2
(

1
n

)

1
n2

= lim
n→∞

(sin
(

1
n

)

1
n

)2
.

Letting x = 1
n
, this becomes

lim
x→0

(sinx

x

)2
= 1.
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Since (∗) converges for p < 1 and diverges otherwise, by the limit comparison test we conclude that
∞
∑

n=1

np sin2
(

1

n

)

converges for p < 1 and diverges otherwise.

Question 8. According to the poem by Ogden Nash,

Big fleas have little fleas,

Upon their backs to bite ’em,

And little fleas have lesser fleas,

And so, ad infinitum.

Assume each flea has exactly one flea which bites it. If the largest flea weighs 0.03 grams, and each
flea is 1

10 the weight of the flea it bites, what is the total weight of all the fleas?

Solution. The weight of the first flea is w1 = 0.03, the weight of the second is w2 = 0.03 × 1
10 , the

weight of the third is w3 = 0.03 × 1
100 , and so on. So the total weight of all the fleas is

w = w1 +w2 + w3 + · · · = 0.03 +
0.03

10
+

0.03

100
+ . . .

= 0.03
∞
∑

n=0

1

10n
.

This is a convergent geometric series since r = 1
10 , and therefore

w =
0.03

1− 1
10

=
1

30
grams.
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