MATH 155A FALL 13 PRACTICE MIDTERM 4.

Question 1. Find the derivative of the following functions.

(a)
$$f(x) = \int_0^x \sqrt{t + \sqrt{t}} dt.$$

(b) $f(x) = \int_0^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz.$
(c) $f(x) = \int_{\tan x}^{x^2} \frac{1}{2 + t^4} dt.$

Question 2. Evaluate the following indefinite integrals.

(a)
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx.$$

(b)
$$\int \frac{dx}{\cos^2 x \sqrt{1 + \tan x}}.$$

(c)
$$\int x^3 \sqrt{x^2 + 1} dx.$$

(d)
$$\int \sin x \cos^4 x dx.$$

(e)
$$\int \left(\int_0^{\sin x} t \, dt \right) \cos x \sin x \, dx.$$

Question 3. Evaluate the following definite integrals.

(a)
$$\int_{1}^{2} \left(\frac{1}{x^{2}} - \frac{4}{x^{3}}\right) dx.$$

(b) $\int_{1}^{9} \frac{3x - 2}{\sqrt{x}} dx.$
(c) $\int_{0}^{\frac{3\pi}{2}} |\sin x| dx.$

Question 4. Find the area enclosed by the given curves.

(a)
$$x = y^4$$
, $y = \sqrt{2-x}$, $y = 0$.

(b)
$$y = \cos x, y = 1 - \cos x, 0 \le x \le \pi$$
.

(c)
$$y = \frac{1}{4}x^2$$
, $y = 2x^2$, $x + y = 3$, $x \ge 0$.

Question 5. Using integration, show that the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$.

Question 6. Using integration, show that the volume of a cone with a circular base of radius r and height h is $\frac{1}{3}\pi r^2 h$.

Question 7. The picture below shows a solid with a circular base of radius 1. Parallel cross sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

Question 8. Find the volume of the solid S whose base is a circular disk with radius r and parallel cross sections perpendicular to its base are squares.

Question 9. Find the volume of a solid torus, the donut-shaped solid shown in the figure below, of radii r and R.

Question 10. Set up an integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.

(a) $y = \sqrt{x-1}$, y = 0, x = 5 about the x – axis.

- (b) y = x, y = 0, x = 2, x = 4, about x = 1.
- (c) $x^2 + 4y^2 = 4$, about y = 2.
- (d) $x^2 + 4y^2 = 4$, about x = 2.
- (e) $y^2 x^2 = 1$, y = 2, about the y axis.
- (e) $x = (y 3)^2$, x = 4, about x = -1.

Question 11. Prove the Fundamental Theorem of Calculus.

URL: http://www.disconzi.net/Teaching/MAT155A-Fall-13/MAT155A-Fall-13.html