
MATH 155A FALL 13
PRACTICE MIDTERM 1 — SOLUTIONS.

Question 1. Find the domain of the following functions.

(a) f(x) = 2x3−5
x2+x−6 .

(b) g(x) = x+1
1+ 1

x+1

.

(c) f(x) =
√

5− x+ 1√
x−10 .

Solution.

(a) We need x2 + x− 6 = (x+ 3)(x− 2) 6= 0. Hence Dom(f) = {x ∈ R |x 6= −3, 2}.
(b) The denominator of 1

x+1
needs to be non-zero, thus x 6= −1. Also 1 + 1

x+1
6= 0, what gives

1 +
1

x+ 1
=
x+ 2

x+ 1
6= 0⇒ x+ 2 6= 0,

or yet x 6= −2. Hence Dom(g) = {x ∈ R |x 6= −2,−1}.
(c) We have Dom(

√
5− x) = {x ∈ R |x ≤ 5} and Dom(

√
x− 10) = {x ∈ R |x ≥ 10}. Since

the domain of the sum is the intersection of the domains, we have

Dom(f) = {x ∈ R |x ≤ 5} ∩ {x ∈ R |x ≥ 10} = ∅,

i.e., this f is not well defined.

Question 2. An electricity company charges its customers a base rate of $10 a month, plust 5
cents per kilowatt-hour (kWh) for the first 1200 kWh and 7 cents per kWh for all usage over
1200 kWh. Express the monthly cost E as a function of the amount x of electricity used.

Solution.

E(x) =

{
10 + 0.05x, 0 ≤ x ≤ 1200

10 + 0.05× 1200 + 0.07(x− 1200), x > 1200.

Question 3. At the surface of the ocean, the water pressure is the same as the air pressure
above the water, 15 lb/in2. Below the surface, the water pressure increases by 4.34 lb/in2 for
every 10 ft of descent. Express the water pressure as a function of the depth below the ocean
surface.

Solution. Let h be the depth below the ocean surface and P the pressure. Then

P = 15 +
4.34h

10
,

1
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with P measured in lb/in2 and h in ft.

Question 4. Compute the values of the following trigonometric expressions.

(a) sin 5π
6

.

(b) tan 19π
4

+ cos(−π
6
).

(c) sec 4π
3

.

Solution.

(a) 1
2
. (b) tan 19π

4
= tan(4π + 3π

4
) = tan 3π

4
= −1, cos(−π

6
) = cos(π

6
) =

√
3
2

. So tan 19π
4

+

cos(−π
6
) =

√
3
2
− 1. (c) sec 4π

3
= 1

cos 4π
3

= 1
− 1

2

= −2.

Question 5. Prove the following formulas.

(a) sin2 x− sin2 y = sin(x+ y) sin(x− y).

(b) cos2 θ = 1+cos(2θ)
2

.

Solution.

(a) We have

sin(x± y) = sinx cos y ± sin y cosx,

so

sin(x+ y) sin(x− y) = (sin x cos y + sin y cosx)(sinx cos y − sin y cosx)

= sin2 x cos2 y − sin2 y cos2 x

= sin2 x(1− sin2 y)− sin2 y(1− sin2 x)

= sin2 x− sin2 x sin2 y − sin2 y + sin2 y sin2 x

= sin2 x− sin2 y.

(a) We have

cos(θ + ξ) = cos θ cos ξ − sin θ sin ξ,

so

cos(2θ) = cos(θ + θ) = cos2 θ − sin2 θ.

Adding the above formula with 1 = cos2 θ + sin2 θ yields the result.

Question 6. Find all solutions to the following trigonometric equations.

(a) 2 cosx− 1 = 0.

(b) | tanx| = 1.

(c) 2 + cos 2x = 3 cos x.



MATH 155A FALL 13 3

Solution.

(a) We have cosx = 1
2
, which gives x = π

3
+ 2πk, x = 5π

3
+ 2πk.

(b) We have tanx = 1 or tan x = −1, which gives x = π
4

+ πk, x = 3π
4

+ πk.

(c) Use cos 2x = 2 cos2 x− 1 (see question 5) to write

2 + 2 cos2 x− 1 = 3 cosx,

or

2 cos2 x− 3 cosx+ 1 = 0.

This is a quadratic equation for cosx. The quadratic formula gives

cosx =
3±
√

9− 8

4
,

so cos x = 1 or cos x = 1
2
, what gives x = 0 + 2πk, x = π

3
+ 2πk, x = 5π

3
+ 2πk.

Question 7. Evaluate the following limits, showing that the limit does not exist when that is
the case.

(a) lim
x→3−

x+ 2

x+ 3
.

(b) lim
x→1

x3 − 1√
x− 1

.

(c) lim
x→2

√
2x3 + 1

3x− 2
.

(d) lim
x→0

√
x3 + x2 sin

π

x
.

(e) lim
x→π

2

| tanx|.

(f) lim
x→0+

(1

x
− 1

|x|

)
.

(g) lim
x→0

(1

x
− 1

|x|

)
.

(h) lim
x→π

sin(x+ sinx).
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(i) lim
x→7

√
1 +

1

x
.

Solution.

(a) The function is defined at 3, so the limit is 5
6
.

(b) Write for x 6= 1,

x3 − 1√
x− 1

=
x3 − 1√
x− 1

√
x+ 1√
x+ 1

=
(
√
x+ 1)(x3 − 1)

x− 1

=
(
√
x+ 1)(x− 1)(x2 + x+ 1)

x− 1

= (
√
x+ 1)(x2 + x+ 1).

This expression is defined at x = 1 and the limit is therefore 2× 3 = 6.

(c) The function is defined and continuous at x = 2, so

lim
x→2

√
2x3 + 1

3x− 2
=

√
lim
x→2

2x3 + 1

3x− 2
=

√
17

4

(d) Notice that limx→0

√
x3 + x2 = 0, limx→0(−

√
x3 + x2) = 0, and

−1 ≤ sin
π

x
≤ 1.

Hence

−
√
x3 + x2 ≤

√
x3 + x2 sin

π

x
≤
√
x3 + x2.

From the squeeze theorem we therefore conclude that

lim
x→0

√
x3 + x2 sin

π

x
= 0.

(e) Since tanx → ∞ when x → π
2
− and tanx → −∞ when x → π

2
+, we conclude that

| tanx| → ∞ as x→ π
2
.

(f) Because |x| = x for x > 0 and the limit is from the right, we can remove the absolute
value and then 1

x
− 1
|x| = 1

x
− 1

x
= 0. Hence the limit is equal to zero.

(g) Because |x| = −x for x < 0, and the limit is from the left, if we remove the absolute
value: 1

x
− 1
|x| = 1

x
+ 1

x
= 2

x
for x < 0. Hence

lim
x→0−

(1

x
− 1

|x|

)
= lim

x→0−

2

x
= −∞.

We computed the limit from the right above and found zero. Hence the limit does not exist
as the limits from the right and left do not agree.
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(h) Since sinx is continuous

lim
x→π

sin(x+ sinx) = sin(lim
x→π

+ lim
x→π

sinx) = sin(π + sin π) = sin(π + 0) = sinπ = 0.

(i) Again by continuity

lim
x→7

√
1 +

1

x
=

√
1 + lim

x→7

1

x
=

√
1 +

1

7
.

Question 8. Let

g(x) =


x if x < 1,

3 if x = 1,

2− x2 if 1 < x ≤ 2,

x− 3 if x > 2.

Evaluate or explain why the limit does not exist.

(a) lim
x→1−

g(x).

(b) lim
x→1

g(x).

(c) lim
x→2−

g(x).

(d) lim
x→2+

g(x).

(e) lim
x→2

g(x).

Solution.

(a) 1. (b) 1. (c) −2. (d) −1. (e) does not exist.

Question 9. For the function g of the previous question, indicate the values of x for which g
is not continuous.

Solution. The function is discontinuous at x = 1 and x = 2.

Question 10. Explain why the following functions are continuous at every point in their
domain.
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(a) f(x) =
sinx

x+ 1
.

(b) f(x) =
tanx√
4− x2

.

(c) f(x) = sin(cos(sin x)).

Solution.

(a) sinx and x + 1 are continuous. The quotient of continuous functions is continuous
whenever the denominator does not vanish.

(b) tanx is continuous where it is defined,
√
x is continuous for x ≥ 0 and 4 − x2 is

continuous. The composition
√

4− x2 is therefore continuous where it is defined, since the
composition of continuous functions is continuous. The quotient tanx√

4−x2 is therefore continuous

on its domain.

(c) Composition of continuous functions is continuous.

Question 11. Let f(x) = x3−8
x2−4 . Can you define a new function, g(x), which agrees with f(x)

on the domain of f(x) and is continuous at x = 2? What value should f(2) have if we want
to define it as a continuous function at x = 2?

Solution. Notice that for x 6= ±2

x3 − 8

x2 − 4
=

(x− 2)(x2 + 2x+ 4)

(x− 2)(x+ 2)
=
x2 + 2x+ 4

x+ 2
.

Define g by the same expression as f for x 6= ±2, and put g(2) = 22+2×2+4
2+2

= 3. Also, define
f(2) = 3.

Question 12. Using the ε, δ definition of a limit, show that

(a) lim
x→10

(3− 4

5
x) = −5.

(b) lim
x→−6+

8
√

6 + x = 0.

Solution.
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(a) Write

|3− 4

5
x− (−5)| = |8− 4

5
x| = |8− 4

5
(x− 10 + 10)| = 4

5
|x− 10|.

Given ε > 0 we can then choose δ = 5
4
ε.

(b) For given ε > 0, we want, for x > −6,

| 8
√

6 + x− 0| = 8
√
x− (−6) < ε.

We can therefore choose δ = ε8.

Question 13. Using ε, δ arguments, prove that the function f(x) = 1
x+1

is continuous at every
point on its domain.

Solution. Fix a 6= −1. Given ε > 0, we want∣∣∣ 1

x+ 1
− 1

a+ 1

∣∣∣ < ε,

or

|x− a|
|a+ 1||x+ 1|

< ε.

If δ is such that δ < |a+1|
2

, then |x+ 1| > |a+1|
2

whenever |x− a| < δ. Thus

|x− a|
|a+ 1||x+ 1|

<
2|x− a|

|a+ 1||a+ 1|
=

2|x− a|
|a+ 1|2

So to get

2|x− a|
|a+ 1|2

< ε,

or equivalently,

|x− a| < |a+ 1|2

2
ε,

we can choose δ = |a+1|2
2

ε. Therefore, if δ = min{ |a+1|
2
, |a+1|2

2
ε} we conclude that |x − a| < δ

implies ∣∣∣ 1

x+ 1
− 1

a+ 1

∣∣∣ < ε,

what shows that 1
x+1

is continuous at a. Since a is an arbitrary point in the domain, we have
the result.

Question 14. Using the definition of derivative, compute f ′(x).

(a) f(x) = x2.
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(b) f(x) =
1− 2x

3 + x
.

Solution.

(a) Write

f(x+ h)− f(x)

h
=

(x+ h)2 − x2

h

=
x2 + 2hx+ h2 − x2

h

=
2hx+ h2

h
= 2x+ h.

So

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0
(2x+ h) = 2x.

(b) Write

f(x+ h)− f(x)

h
=

1−2(x+h)
3+(x+h)

− 1−2x
3+x

h

=
1

h

(3 + x)(1− 2x− 2h)− (1− 2x)(3 + x+ h)

(3 + x+ h)(3 + x)

=
1

h

(3 + x)(1− 2x)− 2(3 + x)h− (1− 2x)(3 + x)− (1− 2x)h

(3 + x+ h)(3 + x)

=
1

h

−2(3 + x)h− (1− 2x)h

(3 + x+ h)(3 + x)

=
−2(3 + x)− (1− 2x)

(3 + x+ h)(3 + x)
=

−7

(3 + x+ h)(3 + x)

Hence

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

−7

(3 + x+ h)(3 + x)
= − 7

(3 + x)2
.
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