MATH 155A FALL 13 EXAMPLES APPENDIX D

If $0 < \theta < \frac{\pi}{2}$ is such that

$$2(\cos\theta)^2 + (8 - \sqrt{3})\cos\theta - 4\sqrt{3} = 0,$$

find θ .

Solution. Rewrite the equation as

$$(\cos\theta)^2 + \frac{8 - \sqrt{3}}{2}\cos\theta - 2\sqrt{3} = 0.$$
 (1)

Using the quadratic formula, we see that the equation

$$x^2 + \frac{8 - \sqrt{3}}{2}x - 2\sqrt{3} = 0$$

has solutions

$$x = \frac{\sqrt{3}}{2}$$
 and $x = -4$.

Hence (1) can be written as

$$\left(\cos\theta - \frac{\sqrt{3}}{2}\right)\left(\cos\theta + 4\right) = 0,$$

which implies $\cos \theta = \frac{\sqrt{3}}{2}$ or $\cos \theta = -4$. This last condition is never satisfied since $-1 \leq \cos \theta \leq 1$ for any theta, so we conclue that

$$\cos\theta = \frac{\sqrt{3}}{2}.$$

The only θ between zero and $\frac{\pi}{2}$ satisfying the above is $\frac{\pi}{6}$, thus we conclude

$$\theta = \frac{\pi}{6}.$$

URL: http://www.disconzi.net/Teaching/MAT155A-Fall-13/MAT155A-Fall-13.html