MATH 155A FALL 13 MORE EXAMPLES WITH LIMITS

Evaluate the following limits, when possible.

(a)

$$\lim_{x \to \frac{\pi}{2}^-} \frac{(x - \frac{\pi}{2})^4}{\tan x}$$

(b)

$$\lim_{\theta \to \pi} |\csc \theta|.$$

Solutions.

(a) We cannot plug in $x = \frac{\pi}{2}$ because $\tan \frac{\pi}{2}$ is undefined. Notice, however, that when x approaches $\frac{\pi}{2}$ from the left, the values of $\tan x$ become positive and unbounded (recall the graph of tan), i.e.

$$\lim_{x \to \frac{\pi}{2}^{-}} \tan x = \infty.$$

Therefore, $\frac{1}{\tan x}$ is bounded by, say, one, for values of x sufficiently close but less than $\frac{\pi}{2}$, and then

$$0 \le \frac{1}{\tan x} \le 1$$
 for x sufficiently close to $\frac{\pi}{2}$ and $x < \frac{\pi}{2}$.

Multiplying by $(x - \frac{\pi}{2})^4$:

$$0 \le \frac{(x - \frac{\pi}{2})^4}{\tan x} \le (x - \frac{\pi}{2})^4 \text{ for } x \text{ sufficiently close to } \frac{\pi}{2} \text{ and } x < \frac{\pi}{2}.$$

Since

$$\lim_{x \to \frac{\pi}{2}^{-}} (x - \frac{\pi}{2})^4 = 0,$$

by the squeeze theorem we conclude that

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{(x - \frac{\pi}{2})^4}{\tan x} = 0.$$

(b) Recall that $\csc \theta = \frac{1}{\sin \theta}$. Since $\sin \pi = 0$, we cannot simply plug in $\theta = \pi$. Recall also that

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

For θ less than and close enough to π , we have $\sin \theta > 0$, whereas for θ greater than and close enough to π , we have $\sin \theta < 0$ (recall the graph of sin). Therefore,

$$\lim_{\theta \to \pi^-} \frac{1}{\sin \theta} = \infty,$$

since $\sin \theta$ approaches zero by positive values, and

$$\lim_{\theta \to \pi^+} \frac{1}{\sin \theta} = -\infty,$$

since $\sin \theta$ approaches zero by negative values. Thus,

$$\lim_{\theta \to \pi^-} |\csc \theta| = \lim_{\theta \to \pi^-} \left| \frac{1}{\sin \theta} \right| = \lim_{\theta \to \pi^-} \frac{1}{\sin \theta} = \infty,$$

and

$$\lim_{\theta \to \pi^+} |\csc \theta| = \lim_{\theta \to \pi^+} \left| \frac{1}{\sin \theta} \right| = \lim_{\theta \to \pi^-} \left(-\frac{1}{\sin \theta} \right) = \infty$$

As both limits from the right and from the left agree, we obtain

$$\lim_{\theta \to \pi} |\csc \theta| = \infty.$$

 $\mathit{URL:}\ \texttt{http://www.disconzi.net/Teaching/MAT155A-Fall-13/MAT155A-Fall-13.html}$