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Examples for section 8.5

Question: Find the radius of convergence and interval of convergence of the series.
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Solutions.

(a) Identify cn = 1√
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, a = 0 and an = x
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. Use the ratio test
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Therefore the radius of convergence is R = 1. Since a = 0, the interval of radius 1 centered at a = 0
is (−1, 1). To find the interval of convergence we need to plug at the endpoints. Plug x = −1 to find
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This is an alternating series with bn = 1√
n
. By the alternating series test, it converges.

Plugging x = 1 we find
∞
∑

n=1

1√
n

This is a p-series with p = 1
2 . By the p-series test, it diverges. So the interval of convergence is [−1, 1).

(b) Identify cn = (−1)nn2

2n , a = 0, an = (−1)nn2

2n xn. Use ratio test
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Therefore the radius of convergence is R = 2. Since a = 0, the interval of radius 2 centered at a = 0
is (−2, 2). To find the interval of convergence we need to plug at the endpoints. Plug x = −2 to find
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which diverges by the divergence test. Analogously plugging x = 2 we find
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which also diverges by the divergence test. Hence the interval of convergence is (−2, 2).
(c) First notice that we have to write the series as
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since the term with power of x has to be of the form (x−a)n, i.e., without a number multiplying the

x. Now identify cn = 4n
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The ratio test gives
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Therefore the radius of convergence is R = 1
4 . Since a = −1

4 , the interval of radius 1
4 centered at

a = −1
4 is (−1

2 , 0). To find the interval of convergence we need to plug at the endpoints. Plug x = −1
2

to find
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which is absolutely convergent by comparing with a p-series with p = 2. Plugging x = 0 gives
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which converges by the p-series test. So the interval of convergence is [−1
2 , 0].


