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MAT 127 — Calculus C, Spring 12.

Examples for section 7.1

PROBLEMS

Question 1. A population is modeled by the differential equation

dP

dt
= 1.2P (1 −

P

4200
)

For what values of P is the population increasing/decreasing? What are the equilibrium solutions?

Question 2. For what values of r does the function y = erx satisfy the differential equation

2y′′ + y′ − y = 0 ?

Question 3. Consider again the differential equation of question 2. If r1 and r2 are the values of r
you found, show that the function y = Aer1x +Ber2x also satisfies the equation for any values of the
constants A and B.

Question 4. Consider the simple harmonic oscillator equation:

x′′ + ω2x = 0

where ω =
√

k

m
is the frequency of the system (so ω is simply a constant). Using power series, show

that solutions are given by combinations of trigonometric functions.

Remark: Problem 4 is a more challenging one, and it should be read only after the basic material
is well understood.

SOLUTIONS

1. Recall from calculus that a function is increasing if its derivative is positive and decreasing if its
derivative is negative. The differential equation

dP

dt
= 1.2P (1 −

P

4200
)

gives a formula for the derivative. So dP

dt
> 0 is equivalent to 1.2P (1 −

P

4200
) > 0 and dP

dt
< 0 is

equivalent to 1.2P (1 − P

4200
) < 0. To solve these inequalities it is easier to first find the equilibrium

solutions, i.e., those which satisfy dP

dt
= 0 (these are called equilibrium because dP

dt
= 0 implies that

P is a constant, i.e., it doesn’t change in time). We have

1.2P (1 −
P

4200
) = 0 ⇒ P = 0 or P = 4200

Hence we have to find the sign of 1.2P (1− P

4200
) for P < 0, 0 < P < 4200, and P > 4200. For P < 0

one obtains 1.2P (1 −
P

4200
) < 0, so dP

dt
< 0 and P is decreasing there. For 0 < P < 4200 we find

1.2P (1 − P

4200
) > 0, so dP

dt
> 0 and therefore P is increasing on this interval. Finally, for P > 4200

we see that the population is decreasing.
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Remark: Since P represents a population, which is never negative, we may ignore the values P < 0
in this problem.

2. Compute:

y = erx

y′ = rerx

y′′ = r2erx

Plugging in the equation one finds

(2r2 + r − 1)erx = 0

Since the exponential function is never zero, the above equality implies that 2r2+ r− 1 = 0. Solving

this quadratic equation for r we find r1 =
1
2
and r2 = −1. Hence the functions y1 = e

1

2
x and y2 = e−x

are solutions of the differential equation. In other words:

2y′′1 + y′1 − y1 = 0(1)

2y′′2 + y′2 − y2 = 0(2)

3. Put y = Aer1x +Ber2x = Ay1 +By2. Then:

y′ = Ay′1 +By′2

y′′ = Ay′′1 +By′′2

Plugging in the equation:

2y′′ + y′ − y = 2(Ay′′1 +By′′2) +Ay′1 +By′2 − (Ay1 +By2)

= A(2y′′1 + y′1 − y1
︸ ︷︷ ︸

=0 by equation 1

) +B(

=0 by equation 2
︷ ︸︸ ︷

2y′′1 + y′1 − y1)

= 0

So 2y′′ + y′ − y = 0, as it had to be shown.

4. Let x(t) be a solution of the differential equation. Consider its Maclaurin series:

x(t) =
∞∑

n=0

cnt
n(3)

Compute

x′(t) =
∞∑

n=0

cnnt
n−1 =

∞∑

n=1

cnnt
n−1 =

∞∑

n=0

cn+1(n+ 1)tn

x′′(t) =

∞∑

n=0

cn+1(n+ 1)ntn−1 =

∞∑

n=0

cn+2(n+ 2)(n + 1)tn
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Plugging in the equation we find

x′′ + ω2x =

∞∑

n=0

cn+2(n+ 2)(n + 1)tn +

∞∑

n=0

ω2cnt
n

=

∞∑

n=0

(

cn+2(n+ 2)(n + 1) + ω2cn

)

tn

But since x′′ + ω2x = 0, we have that the above expression is zero. Recall that a polynomial is
identically zero if and only if all its coefficients vanish. The same is true for power series. Hence

cn+2(n+ 2)(n + 1) + ω2cn = 0

leading to the following recursive formula

cn+2 = −
ω2

(n+ 2)(n + 1)
cn(4)

We see that if we know c0, then plugging n = 0 in (4) we obtain c2 in terms of c0; plugging n = 2 we
get c4 in terms of c2, which in turn gives c4 in terms of c0, etc. In other words, all even coefficients
can be expressed in terms of c0:

c2 = −
ω2

2 · 1
c0

c4 = −
ω2

4 · 3
c2 =

ω4

4 · 3 · 2 · 1
c0

Continuing we find

c2n =
(−1)nω2n

(2n)!
c0

Analogously all odd coefficients can be expressed in terms of c1. One finds

c3 = −
ω2

3 · 2
c1

c5 = −
ω2

5 · 4
c3 =

ω4

5 · 4 · 3 · 2
c1

And

c2n+1 =
(−1)nω2n

(2n + 1)!
c1

Plugging back into (3) and separating even and odd powers gives

x(t) =

∞∑

n=0

cnt
n =

∞∑

n=0

c2nt
2n +

∞∑

n=0

c2n+1t
2n+1

=
∞∑

n=0

(−1)nω2nc0

(2n)!
t2n +

∞∑

n=0

(−1)nω2nc1

(2n + 1)!
t2n+1

= c0

∞∑

n=0

(−1)nω2n

(2n)!
t2n +

c1

ω

∞∑

n=0

(−1)nω2n+1

(2n + 1)!
t2n+1
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We recognize the first sum as the series for cos(ωt) and the second one as the series for sin(ωt), hence

x(t) = c0 cos(ωt) +
c1

ω
sin(ωt)

The constants c0 and c1 are undetermined constants, that can be only found if we are given the
initial conditions for this problem.


