
VANDERBILT UNIVERISTY

MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 1

1. Problems

The notation and terminology below is the same used in class.

Problem 1. Verify whether the given function is a solution of the given PDE:

(a) u(x, y) = y cosx+ sin y sinx, uxx + u = 0.

(b) u(x, y) = cosx sin y, (uxx)2 + (uyy)
2 = 0.

Problem 2. For each PDE seen as example in the first class (Laplace’s equation, Helmholtz’s
equation, linear transport equation, heat equation, Schödinger’s equation, wave equation, eikonal
equation, minimal surface equation, Burgers’ equation, Maxwell’s equation, Euler and Navier-
Stokes equations, Einstein’s equations), state whether it is a scalar PDE (i.e., single PDE) or a
system of PDEs, its order, and whether it is a linear or non-linear PDE.

Problem 3. Write each PDE below in the form P (Dku, . . . ,Du, u, x) = 0, i.e., identify the function
P . State if the PDE is homogeneous or non-homogeneous, linear or non-linear.

(a) utt − uxx = f.

(b) uy + uux = 0.

(c) aijk∂3ijkv + v = 0,

where i, j, k range from 1 to 3.

(d) uxx + x2y2uyy = (x+ y)2.

(e) uxy + cos(u) = sin(xy).

Problem 4. Consider a linear homogeneous PDE. Explain why any linear combination of solutions
is also a solution. (Again, use your knowledge of ODE to define linearity here.)

Problem 5. Consider Maxwell’s equations:

divE =
%

ε0
,

divB = 0,

∂B

∂t
+ curlE = 0,

∂E

∂t
− 1

µ0ε0
curlB = − 1

ε0
J.

Assume that % and J vanish. Show that Maxwell’s equations then imply that E and B satisfy the
wave equation:

∂2E

∂t2
− 1

ε0µ0
∆E = 0,

1



2 MATH 8110 Fall 21

and

∂2B

∂t2
− 1

ε0µ0
∆B = 0.

Interpret your result. Can you guess what the constant 1
ε0µ0

must equal to?

Problem 6. Consider Euler’s equations:

∂t%+ ui∂i%+ %∂iu
i = 0,

%(∂tu
j + ui∂iu

j) +∇jp = 0,

where we recall that p = p(%). A fluid is called incompressible if % = constant, in which case we
can set % = 1. In this case, the equations describing the fluid motion are

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0,

which are called the incompressible Euler equations. For an incompressible fluid, however, the
pressure is no longer given by p = p(%), since the pressure would then be constant, but experiments
show that the pressure can vary even if the density remains (approximately) constant. Show that
in the case of the incompressible Euler equations, the pressure is given as a solution to

∆p = −∂jui∂iuj .

Problem 7. Consider the incompressible Euler equations (see previous question):

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0.

The vorticity ω of the fluid is defined as

ω := curlu.

The vorticity is an important physical quantity; it measures, as the name suggests, “eddies” in the
fluid. It is, therefore, important to know how it changes in time and space (i.e., what the dynamics
of the vorticity is). Show that ω satisfies the following PDE:

∂tω+∇uω−∇ωu = 0.

Above, the operators ∇u and ∇ω are defined as follows. For any vector field X, ∇X is a short hand
notation for X · ∇, i.e.,

∇X := X · ∇,

where we recall that X · ∇ has been defined in class as

X · ∇ = Xi∂i.

2. Solutions

Solution 1. (a) Compute uxx(x, y) = −y cosx− sinx sin y = −u(x, y), thus u is a solution.
(b) Compute uxx(x, y) = − cosx sin y, uyy(x, y) = − cosx sin y, thus

uxx(x, y))2 + (uyy(x, y))2 = 2 cos2 x sin2 y 6= 0,

hence u is not a solution.
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Solution 2. Laplace’s equation: scalar, second order, linear. Helmholtz’s equation: scalar, second
order, linear. Linear transport equation: scalar, first order, linear. Heat equation: scalar, second
order (first-order in time), linear. Schödinger’s equation: complex scalar, second order (first-order
in time), linear. Wave equation: scalar, second order, linear. Eikonal equation: scalar, first order,
fully nonlinear. Minimal surface equation: scalar, second order, quasi-linear. Burgers’ equation:
scalar, first order, quasi-linear. Maxwell’s equation: system, first order, linear. Euler’s equations:
system, first order, quasi-linear. Navier-Stokes’ equations: system, second order (first-order in
time), quasi-linear. Einstein’s equations: it’s complicated, but when written in a specific “gauge,”
it’s a system, second order, quasi-linear.

Solution 3. In order to find F , it is useful to identify whether the PDE is linear, homogeneous,
the unknown function, etc.

(a) Unknown: u. Independent variables: x, t. Order: second. We have

P (p1, . . . , p9) = p9 − p6 − f(p1, p2).

The equation is linear and non-homogeneous.
(b) Unknown: u. Independent variables: x, y. Order: first. We have

P (p1, . . . , p5) = p5 + p3p4.

The equation is non-linear (because of the term uux).
(c) It is instructive to consider a slightly more general case, with i, j, k ranging from 1 to n.

Unknown: v. Independent variables: x1, . . . , xn. Order: third. We have

P (x1, . . . , xn, p, p1, . . . , pn, p11, . . . , pnn, . . . , p111, . . . , pnnn) = aijkpijk + p.

The equation is linear and homogeneous.
(d) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p6 + p21p
2
2p9 − (p1 + p2)

2.

The equation is linear and non-homogeneous.
(e) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p7 + cos p3 − sin(p1p2).

The equation is non-linear (because of cosu).

Solution 4. Sums and multiplication by constants are preserved by linearity.

Solution 5. Under the assumptions, the equations become

divE = 0, (2.1)

divB = 0, (2.2)

∂B

∂t
+ curlE = 0, (2.3)

∂E

∂t
− 1

µ0ε0
curlB = 0. (2.4)

Take the curl of (2.3) and note that curl ∂∂t = ∂
∂tcurl to get

∂

∂t
curlB + curlcurlE = 0.

But curlB = µ0ε0
∂E
∂t by (2.4), thus

µ0ε0
∂2E

∂t2
+ curlcurlE = 0.
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Recalling the following identity from multivariable calculus

curlcurlf = ∇(divf)−∆f,

and using (2.1), we obtain the wave equation for E. The wave equation for B is similarly obtained.
The interpretation is that the electric and magnetic fields propagate in vacuum as waves. From

the discussion about the wave equation in class, we conclude that 1√
µ0ε0

is the speed of propagation

of the electromagnetic waves, which, from physics, we know to be equal to the speed of light (in
vacuum).

Solution 6. Taking the divergence of the momentum equation and using that ∂iu
i = 0, we find

0 = ∂j(∂tu
j + ui∂iu

j +∇jp)
= ∂t∂ju

j + ∂ju
i∂iu

j + ui∂i∂ju
j + ∂i∂

ip

= ∂ju
i∂iu

j + ∂i∂
ip,

where we denoted ∂i := δij∂j , with δ being the Kronecker-delta symbol defined as δij = δij = δij = 1

if i = j and 0 otherwise. Noting that ∂i∂i = ∆, we have the result.

Remark. Note that while Euler’s equations in principle require functions that are only once
differentiable, the above calculation assumed that the functions are in fact twice continuously
differentiable.

Solution 7. Denoting by | · | the norm in R3, observe the following identity:

1

2
∇i|u|2 =

1

2
∇i(u`u`) = u`∂iu` = u`∂`u

i + (u`∂iu` − u`∂`ui),

where ∂i is as in the last question. Next, compute

(u×ω)i = εijkuiωk = εijkujε
`n
k ∂`un

= (δi`δjn − δj`δin)uj∂`un

= un∂iun − u`∂`ui,
where we used the identity

εijkεk`n = εkijεk`n = δi`δ
j
n − δ

j
`δ
i
n,

which can be verified directly. From the foregoing we conclude that

∇uu =
1

2
∇|u|2 − u×ω,

which implies

curl∇uu = −curl(u×ω).

Let us compute the RHS:

(curl(u×ω))i = εijk∂jωk = εijk∂j(ε
`n
k ∂`un)

= εijkε `n
k ∂ju`ωn + εijkε `n

k u`∂jωn

= (δi`δjn − δj`δin)∂ju`ωn + (δi`δjn − δj`δin)u`∂jωn

= ∂nuiωn − ∂`u`︸︷︷︸
=0

ωi + ui ∂nω
n︸ ︷︷ ︸

=0

−uj∂jωi

= (∇ωu)i − (∇uω)i,

which implies the result.
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MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 2

1. Problems

Unless stated otherwise, the notation below is as in class.

Problem 1. Show that Laplace’s equation is rotationally invariant, i.e., if u solves ∆u = 0 and we
define

ũ(x) = u(Mx),

where M is an orthogonal matrix, then ∆ũ = 0.

Problem 2. Prove the following fact that we used in the construction of solutions to Poisson’s
equation: let f : Rn → R be continuous, then

lim
r→0+

1

vol(∂Br(x))

∫
∂Br(x)

f dS = f(x).

Hint: Consider the difference f(x)− 1
vol(∂Br(x))

∫
∂Br(x)

f dS and use 1
vol(∂Br(x))

∫
∂Br(x)

dS = 1.

Remark: The result is valid under weaker assumptions; in fact, it holds for a.e. x0 if f is assumed
to be locally integrable (this is sometimes known as the Lebesgue differentiation theorem).

Problem 3. In class, we constructed solutions to Poisson’s equation in Rn for n ≥ 3. Carry out
the construction in the case n = 2. You do not have to do all the steps. Rather, follow what was
done in class and point out what changes in n = 2. This boils down to slightly modifying some of
the estimates for the fundamental solution.

Problem 4. Let u be a non-trivial harmonic function in Rn. Can u have compact support?

Hint: mean value theorem.

Problem 5. Prove the converse of the mean value theorem. I.e., let u ∈ C2(Ω) be such that

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

u dS

for each Br(x) ⊂⊂ Ω. Show that ∆u = 0 in Ω.

Hint: Assume that ∆u(x) 6= 0 for some x ∈ Ω. Use the functions f(r), f ′(r) used in the proof of
the mean value to derive a contradiction.

2. Solutions

Solution 1. Write y = Mx. The chain rule gives

∂

∂xi
=
∂yj

∂xi
∂

∂yj

= Mji
∂

∂yj
,

1
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and

∂2

∂(xi)2
=

∂

∂xi
∂

∂xi

=

(
Mji

∂

∂yj

)(
M`i

∂

∂y`

)
= MjiM`i

∂2

∂yj∂y`
,

where there is no sum over i above. Summing over i:

∆x =
∑
i

∂2

∂(xi)2

=
∑
i

MjiM`i
∂2

∂yj∂y`

= δ
j
`

∂2

∂yj∂y`

=
∑
j

∂2

∂(yj)2

= ∆y,

where we used that MMT = I, i.e., ∑
i

MjiM`i = δj`.

Solution 2. We have to prove that given ε > 0, there exists a δ > 0 such that if 0 < r < δ then∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f dS − f(x)

∣∣∣∣∣ < ε.

Write

1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x) =
1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS − f(x)

vol(∂Br(x))

∫
∂Br(x)

dS(y)

=
1

vol(∂Br(x))

∫
∂Br(x)

(f(y)− f(x)) dS(y).

Thus ∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x)

∣∣∣∣∣ ≤ 1

vol(∂Br(x))

∫
∂Br(x)

|f(y)− f(x)| dS(y).

Fix ε > 0. Since f is continuous, there exists a δ > 0 such that if |x−y| < δ then |f(x)−f(y)| < ε.
If r < δ, then |x− y| < δ for all y ∈ ∂Br(x), thus∣∣∣∣∣ 1

vol(∂Br(x))

∫
∂Br(x)

f(y) dS(y)− f(x)

∣∣∣∣∣ < 1

vol(∂Br(x))

∫
∂Br(x)

ε dS = ε.

Solution 3. We use the following estimates in the n = 2 case:∫
Bε(0)

|Γ(y)| dy ≤ Cε2| ln ε| → 0 as ε→ 0+,
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and ∫
∂Bε(0)

|Γ(y)| dS(y) ≤ Cε| ln ε| → 0 as ε→ 0+,

and the rest of the proof is essentially the same.

Solution 4. No. Let u be harmonic and with compact support and fix an arbitrary x ∈ Rn. By
the compact support property, there exists a r > 0 such that u(y) = 0 for all y ∈ ∂Br(x). By the
mean value formula

u(x) =
1

vol(∂Br(x))

∫
∂Br(x)

u(y) dS(y) = 0,

so that u = 0 since x is arbitrary.

Solution 5. If u is not harmonic, there exists a x ∈ Ω such that ∆u(x) 6= 0. By assumption, the
function

f(r) =
1

vol(∂Br(x))

∫
∂Br(x)

u dS

is constant equal to u(x) on the interval (0, R), where R > 0 is a fixed number such that BR(x) ⊂ Ω.
Thus f ′(r) = 0 for all r ∈ (0, R). On the other hand, by continuity, ∆u has a definite sign, say
positive, on a ball Br0(x) for some r0 > 0, which without loss of generality we can take such that
r0 < R. Arguing as in the proof of the mean value theorem, we find

f ′(r0) =
1

nωnr
n−1
0

∫
Br0 (x)

∆u(y) dy > 0,

contradicting f ′(r0) = 0.
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MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 3

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove that harmonic functions are analytic.

Problem 2. Prove Liouville’s theorem for harmonic functions in Rn.

Problem 3. Prove Harnack’s inequality for (non-negative) harmonic functions.

The remaining questions are about the heat equation in n-dimensions, i.e.,

ut −∆u = 0 in (0,∞)× Rn. (1.1)

Problem 4. Look for a solution to (1.1) in the form

u(t, x) = t−αv(t−βx), (1.2)

where α and β will be chosen and v will be determined. More precisely, proceed as follows:

(a) Show that plugging (1.2) into (1.1) produces

αt−(α+1)v(y) + βt−(α+1)y · ∇v(y) + t−(α+2β)∆v(y) = 0, (1.3)

where y := t−βx.

(b) Set β = 1
2 in (1.3) to obtain

∆v(y) +
1

2
y · ∇v(y) + αv(y) = 0. (1.4)

(c) Assume that v is radially symmetric, i.e.,

v(y) = w(r), (1.5)

where w is to be determined. Show that in this case (1.4) becomes

w′′ +
n− 1

r
w′ +

1

2
rw′ + αw = 0. (1.6)

(d) Set α = n
2 in (1.6) to find

(rn−1w′)′ +
1

2
(rnw)′ = 0. (1.7)

(e) From (1.7), conclude that

rn−1w′ +
1

2
rnw = A, (1.8)

where A is a constant.

(f) Set A = 0 in (1.8) and conclude that

w(r) = Be−
1
4
r2 , (1.9)

where B is a constant.

1
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(g) Combine (1.2), (1.5), (1.9), and take into account the choices of α and β, to conclude that

u(t, x) =
B

t
n
2

e−
|x|2
4t , t > 0, (1.10)

is a solution to (1.1).

Problem 5. Recall that

Γ(t, x) :=

 1

(4πt)
n
2
e−
|x|2
4t , t > 0, x ∈ Rn,

0, t < 0, x ∈ Rn,

is called the fundamental solution of the heat equation. Note that for t > 0, Γ(t, x) is simply (1.10)
with a specific choice of the constant B. In particular, Γ(t, x) is a solution of (1.1).

This choice of B is to guarantee Γ to integrate to 1, i.e., using the fact that∫
Rn

e−|x|
2
dx = π

n
2 , (1.11)

show that for each t > 0 ∫
Rn

Γ(t, x) dx = 1.

(You do not have to show (1.11).)

Problem 6. Consider the initial-value problem for the heat equation:

ut −∆u = 0, in (0,∞)× Rn, (1.12a)

u(0, x) = g(x), x ∈ Rn. (1.12b)

In (1.12), assume that g ∈ C0(Rn) and that there exists a constant C > 0 such that |g(x)| ≤ C for
all x ∈ Rn.

Recall that we showed existence of a solution by defining

u(t, x) :=

∫
Rn

Γ(t, x− y)g(y) dy, t > 0, x ∈ Rn. (1.13)

Show that (1.13) is well-defined.

Problem 7. Provide the details of the proof given in class that u ∈ C∞((0,∞)× Rn), where u is
defined by (1.13).

Hint: Use the following fact, that you do not need to prove. Let α be a multiindex and t > 0. If∫
Rn

Dα
xΓ(t, x− y)g(y) dy

is well-defined, then

Dαu(t, x) =

∫
Rn

Dα
xΓ(t, x− y)g(y) dy,

where we write Dα
x on the RHS to emphasize that the differentiation is with respect to the x

variable.

Problem 8. Look up the mean value formula and the maximum principle for solutions to the heat
equation.
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2. Solutions

Solution 1. See section 2.2.3 of Evan’s book.

Solution 2. See section 2.2.3 of Evan’s book.

Solution 3. See section 2.2.3 of Evan’s book.

Solution 4. These are a sequence of straightforward calculations that are done in the class notes.

Solution 5. Set z = x/
√

4t and change variables to find∫
Rn

e−
|x|2
4t dx =

∫
Rn

e−|z|
2
(
√

4t)n dz = π
n
2 (4t)

n
2 .

Solution 6. We have

|u(t, x)| ≤ C

t
n
2

∫
Rn

e−
|x−y|2

4t dy.

Making the change of variables z = (y − x)/
√

4t we find∫
Rn

e−
|x−y|2

4t dy = (4t)
n
2

∫
Rn

e−|z|
2
dz <∞.

Solution 7. Let α = (α0, α1, . . . , αn) be an arbitrary multiindex. Then

Dα
xΓ(t, x− y) =

p(t, x, y)

tM
e−
|x−y|2

4t , (2.1)

where M is a non-negative constant and p is a polynomial on its arguments (If (2.1) is not clear,
take a few derivatives of Γ(t, x− y) and see the pattern that emerges.) Then, using the assumption
on g, ∣∣∣∣∫

Rn

Dα
xΓ(t, x− y)g(y) dy

∣∣∣∣ ≤ C ∫
Rn

|Dα
xΓ(t, x− y)| dy

≤ C
∫
Rn

|p(t, x, y)|
tM

e−
|x−y|2

4t dy

=

∫
Rn

|q(t, x, z)|
tN

e−|z|
2
dz,

where in the last step we changed variables z = (y − x)/
√

4t, N is a non-negative constant, and q
is polynomial on its arguments. We claim that there exists a constant C > 0, possibly depending
on t, such that

|q(t, x, z)|
tN

e−|z|
2 ≤ Ce−

1
2
|z|2 . (2.2)

For, (2.2) is equivalent to

|q(t, x, z)|
tN

e−
1
2
|z|2 ≤ C. (2.3)

For each fixed x and t > 0, the function |q(t,x,z)|
tN

e−
1
2
|z|2 is a continuous function of z, and because

the exponential decays faster than any polynomial, we conclude that |q(t,x,z)|
tN

e−
1
2
|z|2 is bounded in

Rn as a function of z for each fixed x and t > 0, which is (2.3). Since the integral of e−
1
2
|z|2 is finite,

we have shown the result in view of the hint and the fact that α, x, and t > 0 are arbitrary.

Solution 8. See sections 2.3.2 and 2.3.3 of Evan’s book.
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HW 4

Unless stated otherwise, the notation below is as in class. You can assume that all functions are
C∞ unless stated otherwise.

1. Problems

Problem 1. Prove the differentiation of moving regions formula stated in class:

d

dτ

∫
Ω(τ)

f dx =

∫
Ω(τ)

∂τf dx+

∫
∂Ω(τ)

fv · ν dS. (1.1)

(See the class notes for the notation and precise assumptions.) For simplicity, prove (1.1) in the
following particular case. Assume that n = 3 and that the domains Ω(τ) are given by a one-
parameter family of one-to-one and onto maps ϕ = ϕ(τ, x) : Ω→ Ω(τ) = ϕ(τ,Ω), where Ω := Ω(0)
and ϕ(0, ·) = idΩ, where idΩ is the identity map on Ω, i.e., idΩ(x) = x, x ∈ Ω.

(a) For each fixed τ , consider the change of variables x = ϕ(τ, y), so that∫
Ω(τ)

f(τ, x) dx =

∫
Ω
f(τ, ϕ(τ, y))J(τ, y) dy, (1.2)

where J(τ, y) is the Jacobian of the transformation x = ϕ(τ, y) for fixed τ .

(b) Show that there exists a on parameter family of vector fields u(τ, ·) such that

∂τϕ(τ, x) = u(τ, ϕ(τ, x)).

(c) Explain why u = v on ∂Ω(τ).

(d) Show that

∂τJ(τ, x) = (divu)(τ, ϕ(τ, x))J(τ, x).

(e) Use (1.2) and the above to compute d
dτ

∫
Ω(τ) f , and do an integration by parts to obtain the

result.

Problem 2. Let u be a solution to the Cauchy problem for the wave equation in Rn. Assume that
u0 and u1 have their supports in the ball BR(0) for some R > 0. Show that u = 0 in the exterior
of the region

I := {(t, x) ∈ (0,∞)× Rn |x ∈ BR+t(0) }.

I is called a domain of influence for that data on BR(0) (compare with the 1d case).

Problem 3. Let u be a solution to the Cauchy problem for the wave equation and assume that u0

and u1 have compact support.

(a) Show that the energy

E(t) :=
1

2

∫
Rn

[
(∂tu)2 + |∇u|2

]
dx

is well-defined.

1
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(b) Show that

E(t) = E(0),

i.e., the energy is conserved.

Problem 4. Let u be a solution to the Cauchy problem for the wave equation in R3 with compactly
supported data (i.e., u0 and u1 have compact support).

(a) Show that there exists a constant C > 0, depending on u0 and u1, such that

|u(t, x)| ≤ C

t
, (1.3)

for t ≥ 1 and x ∈ R3. Thus, for each fixed x, u approaches zero as t → ∞, i.e., solutions decay in
time.

Hint: Use the formula for solutions in n = 3. Since the data has compact support, it vanishes
outside BR(0) for some R > 0. This implies an estimate for the area of the largest region within
Bt(x) where the data is non-trivial.

(b) Is the estimate (1.3) sharp? (I.e., can it be improved to show that solutions decay faster in
time than 1

t ?)

(c) Do we still get decay if the data does not have compact support?

Problem 5. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 1d with zero data and source term f is give by

u(t, x) =
1

2

∫ t

0

∫ x+s

x−s
f(t− s, y) dyds. (1.4)

To do so, first use D’Alembert’s formula to conclude that

us(t, x) =
1

2

∫ x+t−s

x−t+s
f(s, y) dy.

Use the definition of u in terms of us and change variables to conclude (1.4).

Problem 6. Use Duhamel’s principle to show that a solution to the inhomoegeneous wave equation
in 3d with zero data and source term f is give by

u(t, x) =
1

4π

∫
Bt(x)

f(t− |y − x|, y)

|y − x|
dy. (1.5)

(The integrand in (1.5) is known as the retarded potential.) To do so, first use Kirchhoff’s formula
for solutions in n = 3 to conclude that

us(t, x) =
t− s

vol(∂Bt−s(x))

∫
∂Bt−s(x)

f(s, y) dS(y).

Use the definition of u in terms of us and change variables to conclude (1.5).

Problem 7. Show that there exists a constant C > 0 such that for any solution u to the 3d wave
equation it holds that

|u(t, x)| ≤ C

t

∫
R3

(|D2u0(y)|+ |Du0(y)|+ |u0(y)|+ |Du1(y)|+ |u1(y)|) dy

for t ≥ 1.

Hint: Use Kirchhoff’s formula, note that for any function f we have

f(y) = f(y)
y − x
t
· y − x

t

on ∂Bt(x), and use one of Green’s identities.
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Problem 8. Consider continuous dependence on the data for the wave equation in 3d, where
smallness on the data part is measured with respect to the norm

‖f‖2 :=

∫
R3

(|D2f(y)|+ |Df(y)|+ |f(y)|) dy.

Give a precise formulation of the continuous dependence on the data and prove your statement,
i.e., a statement saying that two solutions are close if their corresponding initial data are close.

Hint: Use the estimate of problem 7 as a basis for your statement, and give a similar proof (now
you have to also account for t < 1).

2. Solutions

Solution 1. (a) This is simply the change of variables formula from calculus.

(b) For each fixed x, the map τ 7→ ϕ(τ, x) is a curve in R3. ∂τϕ(τ, x) is, therefore, the tangent
vector to this curve at ϕ(τ, x) at time τ . The collection of all such tangent vectors, as τ and x vary,
forms the vector field u.

(c) The map ϕ sends ∂Ω onto ∂Ω(τ) for each τ . Since ∂τϕ(τ, x) is the velocity at time τ of the
particle that started at x ∈ Ω at time zero, u(τ, ϕ(τ, x)) is the velocity of ∂Ω(τ) at the point
ϕ(τ, x) ∈ ∂Ω(τ).

(d) According to the notation of part (a), we set

ϕij =
∂

∂yj
ϕi, ∂ju

i =
∂

∂xj
ui,

where we considered ϕ = (ϕ1, ϕ2, ϕ3). In particular, note that when we write ϕij = ∂jϕ
i the

derivative is always with respect to y ∈ Ω, whereas when we write ∂ju
i the derivative is always

with respect to x ∈ Ω(τ).
Recall the following formula for the determinant of a n× n matrix a with entries aij = arow

column:

det(a) =
1

n!
εi1···inε

j1···jnai1j1 · · · a
in
jn
.

In our case, this gives

J(τ, y) =
1

3!
εi1i2i3ε

j1j2j3ϕi1j1ϕ
i2
j2
ϕi3j3 .

Recall that the definition of J involves an absolute value, which we can omit here since J > 0
because J(0, ·) > 0. Compute

∂τϕ
i
j = ∂j∂τϕ

i

=
∂

∂yj
ui

= ∂`u
iϕ`j ,

where in the second equality we used (b) and in the third one the chain rule. Therefore

∂τJ(τ, y) =
1

3!
εi1i2i3ε

j1j2j3(∂`u
i1ϕ`j1ϕ

i2
j2
ϕi3j3 + ϕi1j1∂`u

i2ϕ`j2ϕ
i3
j3

+ ϕi1j1ϕ
i2
j2
∂`u

i3ϕ`j3). (2.1)

Because εi1i2i3 is non-zero only for i1i2i3 all different from each other, for each triple i1i2i3, the

term εi1i2i3∂`u
i1ϕ`j1ϕ

i2
j2
ϕi3j3 is non-zero only when ` = i1. Similarly for the second and third terms
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on the RHS of (2.1), and we obtain

∂τJ(τ, y) =
1

3!

3∑
i1,i2,i3=1

j1,j2,j3=1

εi1i2i3ε
j1j2j3(∂i1u

i1 + ∂i2u
i2 + ∂i3u

i3)ϕi1j1ϕ
i2
j2
ϕi3j3 .

Because the summand is non-zero only if i1i2i3 are all different from each other, the term in
parenthesis is always equal to ∂1u

1 + ∂2u
2 + ∂3u

3 = divu, which gives the result.

(e) We have

d

dτ

∫
Ω(τ)

f dx = ∂τ

∫
Ω
f(τ, ϕ(τ, y))J(τ, y) dy

=

∫
Ω

(∂τf(τ, ϕ(τ, y))J(τ, y) +∇f(τ, ϕ(τ, y)) · ∂τϕ(τ, y)J(τ, y) + f(τ, ϕ(τ, y))∂τJ(τ, y)) dy

=

∫
Ω

(
∂τf(τ, ϕ(τ, y))J(τ, y) +∇f(τ, ϕ(τ, y)) · u(τ, ϕ(τ, y))J(τ, y)

+ f(τ, ϕ(τ, y))(divu)(τ, ϕ(τ, y))J(τ, y)
)
dy

=

∫
Ω(τ)

(∂τf(τ, x) +∇f(τ, x) · u(τ, x) + f(τ, x)(divu)(τ, x)) dx

=

∫
Ω(τ)

(∂τf(τ, x)− f(τ, x)(divu)(τ, x) + f(τ, x)(divu)(τ, x)) dx

+

∫
∂Ω(τ)

f(τ, x)u(τ, x) · ν(τ, x) dS(x)

=

∫
Ω(τ)

∂τf(τ, x) dx+

∫
∂Ω(τ)

f(τ, x)v(τ, x) · ν(τ, x) dS(x).

Above, we the steps are as follows: in the second line we used the product rule and the chain rule;
in the third line we used (b) and (d); on the fourth line, we changed variables back to x; on the
fifth line we integrated ∇f by parts (equivalently, used on of the Green identities); on the last line,
we used (c).

Solution 2. Let (t, x) /∈ I. Then K−t,x ∩ I = ∅, and the result follows from the finite-propagation
speed for the wave equation.

Solution 3. (a) By question 2, the solution u has compact support for each fixed t.

(b) For each t0 and ε > 0, there exists, by (a), a R∗ > 0 such that u(t, x) = 0 for all t ∈ (t0−ε, t0+ε)
and |x| ≥ R∗. We now follow the proof of the finite-propagation speed property for the wave
equation (see the class notes) using the ball BR∗ , and observe the following. In that proof, we did
an integration by parts, and controlled the boundary term using the Cauchy-Schwarz inequality.
Here, this boundary term vanishes identically by the foregoing. We obtain therefore a sequence of
equalities (rather than inequalities as in the proof done in class), which then gives the result.

Solution 4. (a) The solution is given by

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).

Since the data is compactly supported, there exists a R > 0 such that u0(x) = 0 and u1(x) = 0 for
|x| ≥ R, so that

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).
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Because the data is compactly supported, we have |u0|, |u1|, |∇u0| ≤ C for some C > 0, so that

|u(t, x)| ≤ C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+ |y − x|) dS

=
C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+
t|y − x|

t
) dS

≤ C

vol(∂Bt(x))

∫
∂Bt(x)∩BR(0)

(1 + t+ t) dS

≤ C(1 + t)

t2

∫
∂Bt(x)∩BR(0)

dS,

where we used that |y − x|/t = 1 since y ∈ Bt(x) and that vol(∂Bt(x)) = 4πt2. Because ∂Bt(x) ∩
BR(0) has area at most 4πR2, we have the result.

(b) Yes, it cannot be improved for arbitrary solutions of the wave equation. To see this, take
u0 = 0 and u1 to be a non-negative compactly supported function that is equal to 1 on B1(0).
Then

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

tu1(y) dS(y)

=
t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

u1(y) dS(y) +
t

vol(∂Bt(x))

∫
∂Bt(x)\(Bt(x)∩B1(0))

u1(y) dS(y).

Note that the second term on the RHS is always non-negative, thus

u(t, x) ≥ t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

u1(y) dS(y) =
t

vol(∂Bt(x))

∫
∂Bt(x)∩B1(0)

dS.

For any x on the boundary of the lightcone, i.e., |x| = t, and such that |x| ≥ 1, we have that the
area of ∂Bt(x) ∩B1(0) is ≥ C > 0, so that u(t, x) ≥ C/t.

(c) Not necessarily, e.g., take u0 = 0 and u1 = 1, then u(t, x) = t is the solution.

Solution 5. Using D’Alembert’s formula, we find

us(t, x) =
1

2

∫ x+t−s

x−t+s
f(s, y) dy,

where we used the fact that D’Alembert’s formula was derived for data at t = 0; for data at t = s
we have to replace t by t− s in the limits of integration. Thus

u(t, x) =
1

2

∫ t

0

∫ x+t−s

x−t+s
f(s, y) dyds =

1

2

∫ t

0

∫ x+z

x−z
f(t− z, y) dydz,

where we made the change s = t− z.

Solution 6. Kirchhoff’s formula gives

us(t, x) =
1

vol(∂Bt−s(x))

∫
∂Bt−s(x)

(t− s)f(s, y) dS(y).
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Thus

u(t, x) =

∫ t

0

t− s
vol(∂Bt−s(x))

∫
∂Bt−s(x)

f(s, y) dS(y)ds

=
1

4π

∫ t

0

∫
∂Bt−s(x)

f(s, y)

t− s
dS(y)ds

=
1

4π

∫ t

0

∫
∂Br(x)

f(t− r, y)

r
dS(y)dr

=
1

4π

∫
Bt(x)

f(t− |y − x|, y)

|y − x|
dy,

where we made the change of variables r = t− s and then wrote r = |y − x|.

Solution 7. We have

u(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(u0(y) + tu1(y) +∇u0(y) · (y − x)) dS(y).

The unit outer normal to ∂Bt(x) is ν = (y − x)/t, so that ν · ν = y−x
t ·

y−x
t = 1. Therefore, using

this and Green’s identities,

1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y) dS(y) =
1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y)ν · y − x
t

dS(y)

=
1

vol(∂Bt(x))

∫
Bt(x)

divy

(
u0(y)

y − x
t

)
dy

=
1

vol(∂Bt(x))

∫
Bt(x)

(
∇u0(y) · y − x

t
+ u0(y)

3

t

)
dy,

so that ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

u0(y) dS(y)

∣∣∣∣∣ ≤ C

t2

∫
Bt(x)

(|∇u0(y)|+ |u0(y)|) dy

≤ C

t2

∫
R3

(|∇u0(y)|+ |u0(y)|) dy.

A similar inequality holds for the u1 integral (with an extra factor of t), and for ∇u0:

1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (y − x) dS(y) =
t

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · ν dS(y)

=
1

4πt

∫
Bt(x)

∆u0(y) dy,

so that ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

∇u0(y) · (y − x) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

|D2u0(y)| dy.

Combining the foregoing produces the result.

Solution 8. We formulate it as follows. Let (u0, u1) and (v0, v1) be two data sets for the wave
equation, and let u and v be the respective solutions. Solutions depend continuously on the data
if given ε > 0 and t > 0, there exists a δ > 0 such that if

‖u0 − v0‖2 + ‖u1 − v1‖2 < δ,
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then

|u(t, x)− v(t, x)| < ε

for all x ∈ R3.
We now prove the statement. Set w0 = u0 − v0, w1 = u1 − v1, and w = u − v. By Kirchhoff’s

formula:

w(t, x) =
1

vol(∂Bt(x))

∫
∂Bt(x)

(w0(y) + tw1(y) +∇w0(y) · (y − x)) dS(y).

Proceeding as in problem 7, we find∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

w0(y) dS(y)

∣∣∣∣∣ ≤ C

t2

∫
R3

(|∇w0(y)|+ |w0(y)|) dy,

∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

w1(y) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

(|∇w1(y)|+ |w1(y)|) dy,

and ∣∣∣∣∣ 1

vol(∂Bt(x))

∫
∂Bt(x)

∇w0(y) · (y − x) dS(y)

∣∣∣∣∣ ≤ C

t

∫
R3

|D2w0(y)| dy.

Combining the above we find

|w(t, x)| ≤ C max{1

t
,

1

t2
}(‖w0‖2 + ‖w1‖2),

which implies the result.
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Let u ∈W 1(Ω). Show that Du = 0 a.e. on any set where u is constant.

Problem 2. Is the converse of the previous question true?

Problem 3. Show that W k−1(Ω) ⊂W k(Ω).

2. Solutions

Solution 1. This follows from Du = Du+ −Du−.

Solution 2. Yes, u will be constant a.e. on connected sets. Using the regularization, from Du = 0
we have 0 = (Du)ε = Duε so uε = cε = constant depending on ε. Since uε → u in L1

loc(Ω), the
numerical constants cε converge in the limit ε→ 0+.

Solution 3. The proof is somewhat technical and long and involves ideas from functional analysis
and distribution theory. We will only provide a sketch.

Let W k,p(Ω) denote the set of distributions on Ω with the property that all distributional deriva-
tives of order k belong to Lp(Ω). Let Ω′ ⊂ Ω′′ ⊂ Ω be open sets such that dist(∂Ω′, ∂Ω′′) > ε and
dist(∂Ω′′, ∂Ω) > ε for some fixed ε > 0. Let ψ ∈ C∞c (Ω) be such that ψ = 1 on Ω′′. Let u ∈ W k,p(Ω)
and set T := ψu. Take ϕ ∈ C∞c (Rn) such that supp(ϕ) ⊂ Bε(0) and ϕ = 1 in a neighborhood of
the origin.

Consider the polyhamormonic operator ∆k in Rn, whose fundamental solution is

Γ(x) =

{
c|x|2k−n, for 2k < n or for odd n such that n ≤ 2k,

c|x|2k−n ln |x|, for even n ≤ 2k,

where c is a constant chosen such that ∆kΓ = δ, where δ is the Dirac-delta. Then

∆k(ϕΓ) = δ + ζ

where ζ ∈ C∞c (Rn). It follows that

T + ζ ∗ T =
∑
|α|=k

k!

α!
Dα(ϕΓ) ∗DαT.

Observe that ζ ∗ T ∈ C∞(Rn). Using the Leibniz rule for multi-indices we find that over Ω′′

DαT = ψDαu,

so that

Dα(ϕΓ) ∗DαT = Dα(ϕΓ) ∗ (ψDαu)

over Ω′. From the theory of singular integrals it follows that the corresponding singular integral
operator applied to ψDαu is continuous in Lp(Ω′). Thus u ∈ Lploc(Ω), i.e., W k,p(Ω) ⊂ Lploc(Ω).

1
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Consider now u ∈ Lploc(Ω), so u ∈ Lp(Ω̃) for any open Ω̃ ⊂⊂ Ω, and let T = Dβu be its

distributional derivative, |β| = k − `, 1 ≤ ` ≤ k − 1. By assumption DαT ∈ Lp(Ω̃), |α| = `, i.e.,

T ∈ W `,p(Ω̃). By the foregoing T = Dβu ∈ Lploc(Ω).
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HW 6

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. In class, we proved that any function in W k,p(Ω) can be approximated by smooth
functions up to the boundary if Ω satisfies the segment condition and 1 ≤ p <∞. It was left as a
homework to show that the proof can be reduced to the case of functions with bounded support.
Prove this claim.

Problem 2. Prove the change of variables formula stated in class: Let Ω and D be domains in Rn.
Suppose that there exists a one-to-one and onto map Ψ : Ω → D such that Ψj , (Ψ−1)j ∈ Ck(Ω),
have bounded derivatives, j = 1, . . . , n, k ≥ 1, and 1

C ≤ |detDΨ| + | detDΨ−1| ≤ C for some

constant C ≥ 1. Given u ∈ W k,p(D), 1 ≤ p < ∞, define Ψ̃(u) : Ω → R by Ψ̃(u)(x) = u(Ψ(x)).

Then, Ψ̃ transforms W k,p(D) boundedly onto W k,p(Ω) and has bounded inverse.

2. Solutions

Solution 1. Let ψ ∈ C∞c (Rn) satisfy ψ(x) = 1 for |x| ≤ 1, ψ(x) = 0 for |x| ≥ 2, and |Dαψ(x)| ≤ C
for |α| ≤ k. Set ψε(x) = ψ(εx). Then ψε(x) = 1 for |x| ≤ 1

ε , ψ(x) = 0 for |x| ≥ 2
ε , and

|Dαψε(x)| ≤ Cε|α| ≤ C for |α| ≤ k and 0 < ε ≤ 1. If u ∈ W k,p(Ω), then uε := ψεu belongs to
W k,p(Ω), has bounded support, and

|Dαuε| ≤ C
∑
β≤α
|DβuDα−βψε| ≤

∑
β≤α
|Dβu|.

Set Ωε := {x ∈ Ω | |x| > 1
ε}. Since u− uε = (1− ψε)u = 0 for |x| ≤ 1

ε , we have

‖u− uε‖Wk,p(Ω) = ‖u− uε‖Wk,p(Ωε) ≤ ‖u‖Wk,p(Ωε) + ‖uε‖Wk,p(Ωε) ≤ C‖u‖Wk,p(Ωε)

which goes to zero when ε→ 0.

Solution 2. The map Ψ̃ is well-defined for a.e. functions since k ≥ 1. Let {uj} be a sequence of

smooth functions converging to u in W k,p(Ω). Let |α| ≤ k. Successive applications of the chain
rule and the product rule give

DαΨ̃(uj)(x) =
∑
β≤α

pαβ(x)Dβ
yuj(y) =

∑
β≤α

pαβ(x)Ψ̃(Dβuj)(x),

where y = Ψ(x) and pαβ is a polynomial of degree ≤ |β| in derivatives of Ψj of order ≤ |α|,
j = 1, . . . , n.

Let ϕ ∈ C∞c (Ω). We have

(−1)|α|
∫

Ω
Ψ̃(uj)(x)Dαϕ(x) dx =

∑
β≤α

∫
Ω
pαβ(x)Ψ̃(Dβuj)(x)ϕ(x) dx.

But

(−1)|α|
∫

Ω
Ψ̃(uj)(x)Dαϕ(x) dx =

∫
D

Ψ̃(uj)(Ψ
−1(y))︸ ︷︷ ︸

=uj(y)

(Dαϕ)(Ψ−1(y))| detDΨ−1(y)| dy

1
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and∑
β≤α

∫
Ω
pαβ(x)Ψ̃(Dβuj)(x)ϕ(x) dx =

∑
α≤β

∫
D
pαβ(Ψ−1(y)) Ψ̃(Dβuj)(Ψ

−1(y))︸ ︷︷ ︸
=Dβuj(y)

ϕ(Ψ−1(y))|detDΨ−1(y)| dy.

Since Dβuj → u in Lp, we can replace uj by u above and change variables back to get

(−1)|α|
∫

Ω
Ψ̃(u)(x)Dαϕ(x) dx =

∑
β≤α

∫
Ω
pαβ(x)Ψ̃(Dβu)(x)ϕ(x) dx.

Thus, Ψ̃(u) ∈W k,p(Ω) and

DαΨ̃(u)(x) =
∑
β≤α

pαβ(x)Ψ̃(Dβu)(x).

Then ∫
Ω
|DαΨ̃(u)(x)|p dx ≤ C max

|β|≤|α|
sup
x∈Ω
|pαβ(x)|p

∫
Ω
|DαΨ̃(u)(x)|p︸ ︷︷ ︸
=|(Dβu)(Ψ(x))|p

dx

≤ C max
|β≤|α|

∫
D
|Dβu(y)|p|detDΨ−1(y)| dy

≤ C‖u‖Wk,p(D),

thus ‖Ψ̃(u)‖Wk,p(Ω) ≤ C‖u‖Wk,p(D). Repeating the argument with Ψ−1 in place of Ψ gives the
result.
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the following lemma stated (but not proven) in class: Let p > 1, kp < n,
p∗ = np

n−kp . There exist a constant K > 0 such that

‖χ1 ∗ |u|‖Lp∗ (Rn) ≤ ‖χ1Gk ∗ |u|‖Lp∗ (Rn) ≤ ‖Gk ∗ |u|‖Lp(Rn) ≤ K‖u‖Lp(Rn)

for all u ∈ Lp(Rn).

Hint: Adapt the ideas of the proof given in class of a similar, albeit simpler, inequality.

Problem 2. Prove that u ∈ W 1,p
0 (Ω) (1 ≤ p <∞, ∂Ω a C1 boundary, Ω bounded), if and only if

Tu = 0, where T is the trace operator.

Problem 3. Prove the uniqueness statement in the proof of the “Riesz representation for Sobolev
spaces” (the part that was not done in class).

2. Solutions

Solution 1. All inequalities are a direct consequence of the definitions but the last one. Using
Hölder’s inequality we have

∫
Rn\Br(x)

|u(y)||x− y|k−n dy ≤ ‖u‖Lp(Rn)

(∫
Rn\Br(x)

|x− y|(k−n)p′ dy

) 1
p′

≤ C‖u‖Lp(Rn)

(∫ ∞
r

t(k−n)p
′+n−1 dt

) 1
p′

≤ C1r
k−n

p ‖u‖Lp(Rn),

where 1
p + 1

p′ = 1 and we used that kp < n.

For τ > 0, let r be such that C1r
k−n

p ‖u‖Lp(Rn) = τ
2 . If

Gk ∗ |u|(x) =

∫
Rn

|u(y)||x− y|k−n dy > τ,

then

χrGk ∗ |u|(x) =

∫
Br(x)

|u(y)||x− y|k−n dy > τ

2
. (2.1)

1
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Thus,

|{x |Gk ∗ |u|(x) > τ}| ≤
∣∣∣{x |χrGk ∗ |u|(x) >

τ

2
}
∣∣∣

≤
(

2

τ

)p
‖χrGk ∗ |u|‖pLp(Rn)

≤

(
r

n
p
−k

C1‖u‖Lp(Rn)

)p
Crkp‖u‖pLp(Rn)

= C2r
n,

where we used the similar lemma about convolutions proved in class. Since

rn =

(
2C1

τ
‖u‖Lp(Rn)

)p∗
we have that

|{x |Gk ∗ |u|(x) > τ}| ≤ C2

(
2C1

τ
‖u‖Lp(Rn)

)p∗
.

Therefore, the map

u 7→ Gk ∗ |u|
is of weak type (p, p∗).

The values of p satisfying the our assumptions form an open set, so we can find p1 and p2 in that
set and 0 < θ < 1 such that

1

p
=

1− θ
p1

+
θ

p2
,

1

p∗
=

1

p
− k

n
=

1− θ
p∗1

+
θ

p∗2
.

Because p∗ > p, the Marcinkiewicz interpolation theorem implies that the map u 7→ Gk ∗ |u| is
bounded from Lp(Rn) to Lp

∗
(Rn).

Solution 2. Since the trace is continuous from W 1,p(Ω) to W 1,p(∂Ω) and every element in C∞c (Ω)

has zero trace, we conclude that Tu = 0 for u ∈W 1,p
0 (Ω).

Suppose now that u ∈ W 1,p(Ω) satisfies Tu = 0. As usual, we can reduce the proof to the case
Ω = {xn > 0}. Extend u to be zero outside Ω and denote ũ this extension. Let uj ∈ C∞(Ω) be a
sequence converging to u in W 1,p(Ω). The difference∫

Rn

ũjD
αϕ− (−1)

∫
Rn

D̃αujϕ

is a sum of integrals of the form∫
Rn−1

uj(x
1, . . . , xn−1, 0)ϕ(x1, . . . , xn−1, 0)

which tends to zero by the assumption of zero trace on u. Hence,∫
Rn

ũDαϕ− (−1)

∫
Rn

D̃αuϕ = 0

and ũ ∈ W 1,p(Rn). The result now follows from the following claim, which we prove below:

u ∈W k,p
0 (Ω) if and only if the zero extension of u belongs to W k,p(Rn).

It is not difficult to see that if u ∈W k,p
0 (Ω) then ũ ∈W k,p(Rn). To prove the converse, we argue

as in the proof of approximation of Sobolev functions by smooth functions up to the boundary,
producing the functions uj . Translate ũj by ũj,t(x) = ũj(x − ty), where y is as in that proof (but
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there we translated by + whereas here we translate by −). The translation x−ty moves the support
of ũj to inside Ω so uj,t belongs to W k,p(Rn) since ũj,t does. The restriction of uj,t to Ω belongs to

W k,p
0 (Ω) since uj,t vanishes outside a compact subset of Ω and these restrictions converge to uj as

t→ 0+.
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the uniqueness statement in the proof of the “Riesz representation for Sobolev
spaces” (the part that was not done in class).

Problem 2. Prove that

‖Dα1ui · · ·Dα`u`‖L2(Rn) ≤ C
∑̀
i=1

‖Dkui‖L2(Rn)

∏
j 6=i
‖uj‖L∞(Rn),

for ui ∈ Hk(Rn) ∩ L∞(Rn) and
∑

i |αi| = k.

Hint: You can use, without proof, the Gagliardo-Nirenberg inequality

‖Dju‖
L

2r
j (Rn)

≤ C‖u‖1−
j
r

L∞(Rn)‖D
ru‖

j
r

L2(Rn)
.

Problem 3. In the context of Egorov’s example, prove the lemma that reduces the necessary
condition for existence of weak solutions to

‖v‖0 ≤ C‖L∗v‖N ,

v ∈ C∞c (Ω).

2. Solutions

Solution 1. We follow the notation used in class. Suppose the conclusion holds for v1 and v2

attaining the minimum, so

‖v1‖Lp′ (Ω(k))
= ‖f‖(Wk,p(Ω))′ = ‖v2‖Lp′ (Ω(k))

= 1,

where we can assume = 1 upon redefining f as f
‖f‖

(Wk,p(Ω))′
, and for all u ∈W k,p(Ω),

f(u) =
∑
|α|≤k

〈v1, D
αu〉 =

∑
|α|≤k

〈v2, D
αu〉.

First, we claim that there exists a unique x ∈ X such that

f∗(x) = ‖x‖Lp(Ω(k)) = 1.

Since ‖f‖(Wk,p(Ω))′ = ‖f∗‖X′ = 1, there exists {xi} ⊂ X such that ‖xi‖Lp(Ω(k)) = 1 and |f∗(xi)| → 1;

we can further assume that f∗(xi)→ 1 by modifying the sequence if necessary. Because Lp(Ω(k)) is
uniformly convex for 1 < p <∞, given 0 < ε ≤ 2, there exists a δ > 0 such that if ‖xi−xj‖Lp(Ω(k)) ≥
ε then ‖xi+xj2 ‖Lp(Ω(k)) ≤ 1− δ, thus if ‖xi+xj2 ‖Lp(Ω(k)) > 1− δ we must have ‖xi − xj‖Lp(Ω(k)) < ε.

For large i we have f∗(xi) > 1− δ thus for large i, j we also have f∗(
xi+xj

2 ) > 1− δ. Hence, as f∗

is continuous with norm 1, 1 − δ < f∗(
xi+xj

2 ) ≤ ‖xi+xj2 ‖Lp(Ω(k)). Therefore, ‖xi − xj‖Lp(Ω(k)) < ε

and {xi} is Cauchy, thus xi → x in Lp(Ω(k)) and x ∈ X since X is closed. Clearly ‖x‖Lp(Ω(k)) = 1

1
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and f∗(x) = 1. To obtain uniqueness, if there are two such x’s, say, x1 and x2, we can apply the
above argument to the sequence {x1, x2, x1, x2, . . . }, which must converge.

Since v1 and v2 are two representatives of f∗, we have

f∗(x) = 1 =
∑
|α|≤k

〈(v1)α, xα〉 =
∑
|α|≤k

〈(v2)α, xα〉.

Consider the following claim: given w ∈ Lp(Ω(k)) with ‖w‖Lp(Ω(k)) = 1, there exists at most one

` ∈ (Lp(Ω(k)))
′ such that ‖`‖(Lp(Ω(k)))

′ = 1 and `(w) = 1.

Let ṽ1 and ṽ2 be the extensions of v1 and v2, considered as linear functionals on X, to Lp(Ω(k))
given by Hahn-Banach. Thus ‖ṽ1‖(Lp(Ω(k)))

′ = 1 = ‖ṽ2‖(Lp(Ω(k)))
′ (observe taht even though ṽ1 =

f∗ = ṽ2 on X, we cannot claim from this that ṽ1 = ṽ2 because the Hanh-Banach extensions might
not be unique), and by the foregoing we have ṽ1(x) = 1 = ṽ2(x). Thus ṽ1 = ṽ2 by the above claim.

It remains to prove the above claim. Suppose that there are two such `′s, `1 and `2, `1 6= `2.
Thus `1(u) 6= `2(u) for some u ∈ Lp(Ω(k)). We can assume that `1(u)− `2(u) = 2 upon replacing u
by a suitable multiple of itself, and that `1(u) = 1 and `2(u) = −1 upon replacing u with its sum
with a suitable multiple of w. Thus

`1(w + tu) = 1 + t,

`2(w − tu) = 1 + t,

t > 0. Since ‖`1‖(Lp(Ω(k)))
′ = 1 = ‖`2‖(Lp(Ω(k)))

′ ,

1 + t = `1(w + tu) ≤ ‖w + tu‖Lp(Ω(k)),

1 + t = `1(w − tu) ≤ ‖w + tu‖Lp(Ω(k)).

Recall the Lp-parallelogram inequalities:

‖a+ b

2
‖pLp + ‖a− b

2
‖pLp ≥

1

2
‖a‖pLp +

1

2
‖b‖pLp , 1 < p ≤ 2,

‖a+ b

2
‖p
′

Lp + ‖a− b
2
‖p
′

Lp ≥ (
1

2
‖a‖pLp +

1

2
‖b‖pLp)

p′−1, 2 ≤ p <∞.

If 1 < p ≤ 2, we get

1 + tp‖u‖pLp(Ω(k))
= ‖(w + tu) + (w − tu)

2
‖pLp(Ω(k))

+ ‖(w + tu)− (w − tu)

2
‖pLp(Ω(k))

≥ 1

2
‖w + tu‖pLp(Ω(k))

+
1

2
‖w − tu‖pLp(Ω(k))

≥ (1 + t)p,

which cannot be true for all t > 0. If 2 ≤ p ≤ ∞, we apply the second inequality to get

1 + tp′‖u‖p
′

Lp(Ω(k))
= ‖(w + tu) + (w − tu)

2
‖p
′

Lp(Ω(k))
+ ‖(w + tu)− (w − tu)

2
‖p
′

Lp(Ω(k))

≥ (
1

2
‖w + tu‖pLp(Ω(k))

+
1

2
‖w − tu‖pLp(Ω(k))

)p
′−1

≥ (1 + t)p
′
,

which again is an impossibility.

Solution 2. From Hölder’s inequality and the product rule,

‖Dα(uv)‖L2(Rn) ≤
∑
β≤α

C‖DβuDα−βv‖L2(Rn)

≤ C
∑
β≤α
‖Dβu‖

L
2k
|β| (Rn)

‖Dα−βv‖
L

2k
|α−β| (Rn)
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The Gagliardo-Niremberg inequality gives

‖Dα(uv)‖L2(Rn) ≤ C
∑
β≤α
‖u‖1−

|β|
k

L∞(Rn)‖D
ku‖

|β|
k

L2(Rn)
‖v‖1−

|α−β|
k

L∞(Rn) ‖D
kv‖

|α−β|
k

L2(Rn)

≤ C
∑
β≤α

(‖u‖L∞(Rn)‖Dkv‖L2(Rn))
|α−β|
k (‖Dku‖L2(Rn)‖v‖L∞(Rn))

|β|
k

≤ C(‖u‖L∞(Rn)‖Dkv‖L2(Rn) + ‖v‖L∞(Rn)‖Dku‖L2(Rn))

which implies the result.

Solution 3. Using that we now established H−k(Ω) ≈ (Hk(Ω))′ for k ∈ Z (this had been estab-
lished initially for k ≥ 0), the necessary condition for existence be be extended for s, t ∈ Z. Thus,
there exist s, t ∈ Z such that

‖v‖s ≤ C‖L∗v‖t.
If s ≥ 0, then we can choose N ≥ t. Otherwise, we can assume t ≥ s since if t < s then we can
choose t̃ ≥ s and work with t̃ (since ‖L∗v‖t ≤ ‖L∗v‖t̃ then). Because Dα

xv ∈ C∞c (Ω) if v ∈ C∞c (Ω),
we can apply the inequality to Dα

xv to get

‖Dα
xv‖s ≤ C‖L∗Dα

xv‖t ≤ C‖Dα
xL
∗v‖t ≤ C‖Dα

xL
∗v‖t+|α|,

where we used that L∗v = ∂2
t v − a(t)∂2

xv − b(t)∂xv. We also have

‖∂2
t v‖s−1 ≤ C(‖L∗v‖s−1 + ‖∂2

xv‖s−1 + ‖∂xv‖s−1) ≤ ‖L∗v‖t+1,

where we used ‖L∗v‖s−1 ≤ ‖L∗v‖t+1 by s ≤ t and ‖∂2
xv‖s−1 + ‖∂xv‖s−1 ≤ ‖L∗v‖t+1 by the above.

Then

‖v‖s+1 ≤C(‖v‖s + ‖∂2
t v‖s−1 + ‖∂2

xv‖s−1)

≤ C(‖L∗v‖t + ‖L∗v‖t+1)

≤ ‖L∗v‖t+1.

Iterating this argument gives the result.
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the following statement. Let Lu ≥ f (= f) in a bounded domain Ω, u ∈
C2(Ω) ∩ C0(Ω), and assume that c ≤ 0. Then, there exists a constant C > 0 depending only on

the diameter of Ω and on
‖b‖L∞(Ω)

Λ sub that

sup
Ω
u (|u|) ≤ sup

∂Ω
u+ (|u|) + C sup

Ω

|f−|
Λ

(
|f |
Λ

)
.

(f− = inf{f, 0}, u+ = sup{u, 0}.)

Problem 2. Prove the following statement. Let Lu = f in a bounded domain Ω, u ∈ C2(Ω) ∩
C0(Ω), and assume that c ≤ 0. Let C be the constant of the previous problem and suppose that

A = 1− C sup
Ω

c+

Λ
> 0.

Then

sup
Ω
|u| ≤ 1

A

(
sup

Ω
|u|+ C sup

Ω

|f |
Λ

)
.

2. Solutions

Solution 1. Let Ω lie in the slap 0 < x1 < d and set L0 = aij∂i∂j + bi∂i. If α >
‖b‖L∞(Ω)

Λ + 1, then

L0e
αx1

= (α2a11 + αb1)eαx
1

≥ (α2Λ− α‖b‖L∞(Ω))e
αx1

= (α2Λ− αΛ
‖b‖L∞(Ω)

Λ
)eαx

1

≥ Λ.

Set

v = sup
∂Ω

u+ + (eαd − eαx1
) sup

Ω

|f−|
Λ
≥ 0.

Then

Lv = −(L0e
αx1

) sup
Ω

|f−|
Λ

+ cv

≤ − sup
Ω
|f−|,

thus

L(v − u) ≤ − sup
Ω
|f−| − f ≤ 0.

1
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We also have v−u ≥ 0 on ∂Ω. Thus, by one of the corollaries of the maximum principle, u ≤ v, so

u ≤ sup
∂Ω

u+ + (eαd − eαx1
) sup

Ω

|f−|
Λ

≤ sup
∂Ω

u+ + (eαd − 1) sup
Ω

|f−|
Λ

.

Solution 2. Write Lu = (L0 + c)u = f as (L0 + c−)u = f − c+u =: f̃ . From the previous problem,

sup
Ω
|u| ≤ sup

∂Ω
|u|+ C sup

Ω

|f̃ |
Λ

≤ sup
∂Ω
|u|+ C

(
sup

Ω

|f |
Λ

+ sup
Ω
|u| sup

Ω

|c+|
Λ

)
.

Thus (
1− C sup

Ω

|c+|
Λ

)
sup

Ω
|u| ≤ sup

∂Ω
|u|+ C sup

Ω

|f |
Λ
.
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the following statement used in the proof of existence of solutions to linear
first-order symmetric hyperbolic systems. Let u ∈ L∞

(
J,Hk(Rn)

)
, where k is a non-negative

integer and J is an open interval. Then there exists a ũ ∈ L2
loc (J × Rn) that is k times weakly

differentiable with respect to x and with derivatives in L2
loc (J × Rn) and such that

〈ϕ, u〉 =

∫
J×Rn

ϕũ dx dt,

for all ϕ ∈ C∞c (J × Rn).

2. Solutions

Solution 1. Consider first k = 0. Let ui be a sequence of step functions converging point-wise a.e.
to u. Thus

ui =

Ni∑
`=1

fi,`χAi,`
,

where Ai,` ⊂ J are measurable sets and fi,` ∈ L2(Rn). u` defines a dt × dx-measurable function
which is also measurable in J×Rn (i.e., measurable with respect to the (n+1)-dimensional Lebesgue
measure, since the (n+ 1)-dimensional Lebesgue measure is the completion of the 1× n measure).

Let Bi := {t ∈ J | ‖ui(t)‖L2(Rn) ≤ 2‖u(t)‖L2(Rn)}. Set u′i = χBiui. Then, u′i converges dt-a.e. to

u with respect to L2 and is measurable in J ×Rn. Given a compact set K ⊂ J ×Rn, let K1 be its
projection onto J and set Ui = u′iχK ; Ui is dt× dx-measurable. We have(∫

Rn

|Ui(t, x)− Uj(t, x)| dx
) 1

2

≤ χK1(t)‖u′i(t)− u′j(t)‖L2(Rn).

Consider

‖u′i(t)− u′j(t)‖L2(Rn) ≤ ‖u′i(t)− u(t)‖L2(Rn) + ‖u(t)− u′j(t)‖L2(Rn).

Each term on the RHS converges to zero point-wise a.e. (in t) and is bounded by a function in
L∞(J); thus, dominated convergence implies that {Ui} is a Cauchy sequence in L2(K). Thus, for
each K we have an element UK ∈ L2(J × Rn). Taking an increasing sequence of compact sets we
obtain a locally square-integrable function U in J × Rn. We finally observe that

〈ϕ, u〉 = lim
i→∞
〈ϕ, u′i〉 =

∫
J×Rn

ϕU dt dx

for all ϕ ∈ C∞c (J × Rn). This gives the result for k = 0.
For k ≥ 1, we apply the above to the function D~αu ∈ L∞

(
J, L2(Rn)

)
to obtain Uα such that

〈ϕ,D~αu〉 =

∫
J×Rn

ϕUα dt dx

for all ϕ ∈ C∞c (J × Rn), which gives the result.

1
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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. In class, we defined the concept of a function with local compact support in x, and dis-
cussed that a smooth function f : R×Rn → Rd can be regarded as an element of Cm

(
R, Hk(Rn,Rd)

)
for any m, k ≥ 0. Show that this is not the case if f is assumed only to be such that for each fixed
t, f(t, ·) has compact support.

Hint: Let ϕ ∈ C∞c (Rn) and define f by

f(t, x) =

{
ϕ(x1 − 1

t , x
2, . . . , xn), t > 0,

0, t ≤ 0.

Problem 2. Verify the inequalities Mk[v0] ≤ C and Mk[v1] ≤ C in the proof of local existence
and uniqueness of solutions to quasilinear wave equations.

Problem 3. Let {fi} ⊂ Hk(Rn) be a bounded sequence that converges to f in H`(Rn), ` < k.
Show that f ∈ Hk(Rn).

2. Solutions

Solution 1. Observe that f is smooth for t > 0 and for t < 0. For each (0, x), there exists a
neighborhood U of (0, x) in R × Rn such that f = 0 in U . Thus, f is smooth. For fixed t, f(t, ·)
has compact support. For t ≤ 0, ‖f(t, ·)‖L2(Rn) = 0. But for t > 0, ‖f(t, ·)‖L2(Rn) > 0. Thus

f /∈ C0
(
R, H0(Rn,R)

)
.

Solution 2. We haveMk[v0] =Mk[u0,0] ≤ C0+1 by assumption, so we can choose C ≥ C0+1. For
v1, we needN [vi−1] = N [v0] ≤ zI(C). In the proof, this was obtained using the induction hypothesis
for vi−2, which would give v−1 here, which has not been defined. But we have N [v0] ≤ zI(C) directly
from the fact that v0 is constant in time and from Sobolev embedding.

Solution 3. Since the sequence is bounded in Hk(Rn) it converges weakly to a limit f̃ ∈ Hk(Rn).

Because Hk(Rn) ↪→ H`(Rn) compactly, fi converges to f̃ in H`(Rn). Uniqueness of the limit gives

f̃ = f .

1
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