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MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 8

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the uniqueness statement in the proof of the “Riesz representation for Sobolev
spaces” (the part that was not done in class).

Problem 2. Prove that

‖Dα1ui · · ·Dα`u`‖L2(Rn) ≤ C
∑̀
i=1

‖Dkui‖L2(Rn)

∏
j 6=i
‖uj‖L∞(Rn),

for ui ∈ Hk(Rn) ∩ L∞(Rn) and
∑

i |αi| = k.

Hint: You can use, without proof, the Gagliardo-Nirenberg inequality

‖Dju‖
L

2r
j (Rn)

≤ C‖u‖1−
j
r

L∞(Rn)‖D
ru‖

j
r

L2(Rn)
.

Problem 3. In the context of Egorov’s example, prove the lemma that reduces the necessary
condition for existence of weak solutions to

‖v‖0 ≤ C‖L∗v‖N ,

v ∈ C∞c (Ω).

2. Solutions

Solution 1. We follow the notation used in class. Suppose the conclusion holds for v1 and v2

attaining the minimum, so

‖v1‖Lp′ (Ω(k))
= ‖f‖(Wk,p(Ω))′ = ‖v2‖Lp′ (Ω(k))

= 1,

where we can assume = 1 upon redefining f as f
‖f‖

(Wk,p(Ω))′
, and for all u ∈W k,p(Ω),

f(u) =
∑
|α|≤k

〈v1, D
αu〉 =

∑
|α|≤k

〈v2, D
αu〉.

First, we claim that there exists a unique x ∈ X such that

f∗(x) = ‖x‖Lp(Ω(k)) = 1.

Since ‖f‖(Wk,p(Ω))′ = ‖f∗‖X′ = 1, there exists {xi} ⊂ X such that ‖xi‖Lp(Ω(k)) = 1 and |f∗(xi)| → 1;

we can further assume that f∗(xi)→ 1 by modifying the sequence if necessary. Because Lp(Ω(k)) is
uniformly convex for 1 < p <∞, given 0 < ε ≤ 2, there exists a δ > 0 such that if ‖xi−xj‖Lp(Ω(k)) ≥
ε then ‖xi+xj2 ‖Lp(Ω(k)) ≤ 1− δ, thus if ‖xi+xj2 ‖Lp(Ω(k)) > 1− δ we must have ‖xi − xj‖Lp(Ω(k)) < ε.

For large i we have f∗(xi) > 1− δ thus for large i, j we also have f∗(
xi+xj

2 ) > 1− δ. Hence, as f∗

is continuous with norm 1, 1 − δ < f∗(
xi+xj

2 ) ≤ ‖xi+xj2 ‖Lp(Ω(k)). Therefore, ‖xi − xj‖Lp(Ω(k)) < ε

and {xi} is Cauchy, thus xi → x in Lp(Ω(k)) and x ∈ X since X is closed. Clearly ‖x‖Lp(Ω(k)) = 1
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and f∗(x) = 1. To obtain uniqueness, if there are two such x’s, say, x1 and x2, we can apply the
above argument to the sequence {x1, x2, x1, x2, . . . }, which must converge.

Since v1 and v2 are two representatives of f∗, we have

f∗(x) = 1 =
∑
|α|≤k

〈(v1)α, xα〉 =
∑
|α|≤k

〈(v2)α, xα〉.

Consider the following claim: given w ∈ Lp(Ω(k)) with ‖w‖Lp(Ω(k)) = 1, there exists at most one

` ∈ (Lp(Ω(k)))
′ such that ‖`‖(Lp(Ω(k)))

′ = 1 and `(w) = 1.

Let ṽ1 and ṽ2 be the extensions of v1 and v2, considered as linear functionals on X, to Lp(Ω(k))
given by Hahn-Banach. Thus ‖ṽ1‖(Lp(Ω(k)))

′ = 1 = ‖ṽ2‖(Lp(Ω(k)))
′ (observe taht even though ṽ1 =

f∗ = ṽ2 on X, we cannot claim from this that ṽ1 = ṽ2 because the Hanh-Banach extensions might
not be unique), and by the foregoing we have ṽ1(x) = 1 = ṽ2(x). Thus ṽ1 = ṽ2 by the above claim.

It remains to prove the above claim. Suppose that there are two such `′s, `1 and `2, `1 6= `2.
Thus `1(u) 6= `2(u) for some u ∈ Lp(Ω(k)). We can assume that `1(u)− `2(u) = 2 upon replacing u
by a suitable multiple of itself, and that `1(u) = 1 and `2(u) = −1 upon replacing u with its sum
with a suitable multiple of w. Thus

`1(w + tu) = 1 + t,

`2(w − tu) = 1 + t,

t > 0. Since ‖`1‖(Lp(Ω(k)))
′ = 1 = ‖`2‖(Lp(Ω(k)))

′ ,

1 + t = `1(w + tu) ≤ ‖w + tu‖Lp(Ω(k)),

1 + t = `1(w − tu) ≤ ‖w + tu‖Lp(Ω(k)).

Recall the Lp-parallelogram inequalities:

‖a+ b

2
‖pLp + ‖a− b

2
‖pLp ≥

1

2
‖a‖pLp +

1

2
‖b‖pLp , 1 < p ≤ 2,

‖a+ b

2
‖p
′

Lp + ‖a− b
2
‖p
′

Lp ≥ (
1

2
‖a‖pLp +

1

2
‖b‖pLp)

p′−1, 2 ≤ p <∞.

If 1 < p ≤ 2, we get

1 + tp‖u‖pLp(Ω(k))
= ‖(w + tu) + (w − tu)

2
‖pLp(Ω(k))

+ ‖(w + tu)− (w − tu)

2
‖pLp(Ω(k))

≥ 1

2
‖w + tu‖pLp(Ω(k))

+
1

2
‖w − tu‖pLp(Ω(k))

≥ (1 + t)p,

which cannot be true for all t > 0. If 2 ≤ p ≤ ∞, we apply the second inequality to get

1 + tp′‖u‖p
′

Lp(Ω(k))
= ‖(w + tu) + (w − tu)

2
‖p
′

Lp(Ω(k))
+ ‖(w + tu)− (w − tu)

2
‖p
′

Lp(Ω(k))

≥ (
1

2
‖w + tu‖pLp(Ω(k))

+
1

2
‖w − tu‖pLp(Ω(k))

)p
′−1

≥ (1 + t)p
′
,

which again is an impossibility.

Solution 2. From Hölder’s inequality and the product rule,

‖Dα(uv)‖L2(Rn) ≤
∑
β≤α

C‖DβuDα−βv‖L2(Rn)

≤ C
∑
β≤α
‖Dβu‖

L
2k
|β| (Rn)

‖Dα−βv‖
L

2k
|α−β| (Rn)
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The Gagliardo-Niremberg inequality gives

‖Dα(uv)‖L2(Rn) ≤ C
∑
β≤α
‖u‖1−

|β|
k

L∞(Rn)‖D
ku‖

|β|
k

L2(Rn)
‖v‖1−

|α−β|
k

L∞(Rn) ‖D
kv‖

|α−β|
k

L2(Rn)

≤ C
∑
β≤α

(‖u‖L∞(Rn)‖Dkv‖L2(Rn))
|α−β|
k (‖Dku‖L2(Rn)‖v‖L∞(Rn))

|β|
k

≤ C(‖u‖L∞(Rn)‖Dkv‖L2(Rn) + ‖v‖L∞(Rn)‖Dku‖L2(Rn))

which implies the result.

Solution 3. Using that we now established H−k(Ω) ≈ (Hk(Ω))′ for k ∈ Z (this had been estab-
lished initially for k ≥ 0), the necessary condition for existence be be extended for s, t ∈ Z. Thus,
there exist s, t ∈ Z such that

‖v‖s ≤ C‖L∗v‖t.
If s ≥ 0, then we can choose N ≥ t. Otherwise, we can assume t ≥ s since if t < s then we can
choose t̃ ≥ s and work with t̃ (since ‖L∗v‖t ≤ ‖L∗v‖t̃ then). Because Dα

xv ∈ C∞c (Ω) if v ∈ C∞c (Ω),
we can apply the inequality to Dα

xv to get

‖Dα
xv‖s ≤ C‖L∗Dα

xv‖t ≤ C‖Dα
xL
∗v‖t ≤ C‖Dα

xL
∗v‖t+|α|,

where we used that L∗v = ∂2
t v − a(t)∂2

xv − b(t)∂xv. We also have

‖∂2
t v‖s−1 ≤ C(‖L∗v‖s−1 + ‖∂2

xv‖s−1 + ‖∂xv‖s−1) ≤ ‖L∗v‖t+1,

where we used ‖L∗v‖s−1 ≤ ‖L∗v‖t+1 by s ≤ t and ‖∂2
xv‖s−1 + ‖∂xv‖s−1 ≤ ‖L∗v‖t+1 by the above.

Then

‖v‖s+1 ≤C(‖v‖s + ‖∂2
t v‖s−1 + ‖∂2

xv‖s−1)

≤ C(‖L∗v‖t + ‖L∗v‖t+1)

≤ ‖L∗v‖t+1.

Iterating this argument gives the result.
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