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Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the following statement used in the proof of existence of solutions to linear
first-order symmetric hyperbolic systems. Let u ∈ L∞

(
J,Hk(Rn)

)
, where k is a non-negative

integer and J is an open interval. Then there exists a ũ ∈ L2
loc (J × Rn) that is k times weakly

differentiable with respect to x and with derivatives in L2
loc (J × Rn) and such that

〈ϕ, u〉 =

∫
J×Rn

ϕũ dx dt,

for all ϕ ∈ C∞c (J × Rn).

2. Solutions

Solution 1. Consider first k = 0. Let ui be a sequence of step functions converging point-wise a.e.
to u. Thus

ui =

Ni∑
`=1

fi,`χAi,`
,

where Ai,` ⊂ J are measurable sets and fi,` ∈ L2(Rn). u` defines a dt × dx-measurable function
which is also measurable in J×Rn (i.e., measurable with respect to the (n+1)-dimensional Lebesgue
measure, since the (n+ 1)-dimensional Lebesgue measure is the completion of the 1× n measure).

Let Bi := {t ∈ J | ‖ui(t)‖L2(Rn) ≤ 2‖u(t)‖L2(Rn)}. Set u′i = χBiui. Then, u′i converges dt-a.e. to

u with respect to L2 and is measurable in J ×Rn. Given a compact set K ⊂ J ×Rn, let K1 be its
projection onto J and set Ui = u′iχK ; Ui is dt× dx-measurable. We have(∫

Rn

|Ui(t, x)− Uj(t, x)| dx
) 1

2

≤ χK1(t)‖u′i(t)− u′j(t)‖L2(Rn).

Consider

‖u′i(t)− u′j(t)‖L2(Rn) ≤ ‖u′i(t)− u(t)‖L2(Rn) + ‖u(t)− u′j(t)‖L2(Rn).

Each term on the RHS converges to zero point-wise a.e. (in t) and is bounded by a function in
L∞(J); thus, dominated convergence implies that {Ui} is a Cauchy sequence in L2(K). Thus, for
each K we have an element UK ∈ L2(J × Rn). Taking an increasing sequence of compact sets we
obtain a locally square-integrable function U in J × Rn. We finally observe that

〈ϕ, u〉 = lim
i→∞
〈ϕ, u′i〉 =

∫
J×Rn

ϕU dt dx

for all ϕ ∈ C∞c (J × Rn). This gives the result for k = 0.
For k ≥ 1, we apply the above to the function D~αu ∈ L∞

(
J, L2(Rn)

)
to obtain Uα such that

〈ϕ,D~αu〉 =

∫
J×Rn

ϕUα dt dx

for all ϕ ∈ C∞c (J × Rn), which gives the result.
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