
VANDERBILT UNIVERISTY

MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 1

1. Problems

The notation and terminology below is the same used in class.

Problem 1. Verify whether the given function is a solution of the given PDE:

(a) u(x, y) = y cosx+ sin y sinx, uxx + u = 0.

(b) u(x, y) = cosx sin y, (uxx)2 + (uyy)
2 = 0.

Problem 2. For each PDE seen as example in the first class (Laplace’s equation, Helmholtz’s
equation, linear transport equation, heat equation, Schödinger’s equation, wave equation, eikonal
equation, minimal surface equation, Burgers’ equation, Maxwell’s equation, Euler and Navier-
Stokes equations, Einstein’s equations), state whether it is a scalar PDE (i.e., single PDE) or a
system of PDEs, its order, and whether it is a linear or non-linear PDE.

Problem 3. Write each PDE below in the form P (Dku, . . . ,Du, u, x) = 0, i.e., identify the function
P . State if the PDE is homogeneous or non-homogeneous, linear or non-linear.

(a) utt − uxx = f.

(b) uy + uux = 0.

(c) aijk∂3ijkv + v = 0,

where i, j, k range from 1 to 3.

(d) uxx + x2y2uyy = (x+ y)2.

(e) uxy + cos(u) = sin(xy).

Problem 4. Consider a linear homogeneous PDE. Explain why any linear combination of solutions
is also a solution. (Again, use your knowledge of ODE to define linearity here.)

Problem 5. Consider Maxwell’s equations:

divE =
%

ε0
,

divB = 0,

∂B

∂t
+ curlE = 0,

∂E

∂t
− 1

µ0ε0
curlB = − 1

ε0
J.

Assume that % and J vanish. Show that Maxwell’s equations then imply that E and B satisfy the
wave equation:

∂2E

∂t2
− 1

ε0µ0
∆E = 0,
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and

∂2B

∂t2
− 1

ε0µ0
∆B = 0.

Interpret your result. Can you guess what the constant 1
ε0µ0

must equal to?

Problem 6. Consider Euler’s equations:

∂t%+ ui∂i%+ %∂iu
i = 0,

%(∂tu
j + ui∂iu

j) +∇jp = 0,

where we recall that p = p(%). A fluid is called incompressible if % = constant, in which case we
can set % = 1. In this case, the equations describing the fluid motion are

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0,

which are called the incompressible Euler equations. For an incompressible fluid, however, the
pressure is no longer given by p = p(%), since the pressure would then be constant, but experiments
show that the pressure can vary even if the density remains (approximately) constant. Show that
in the case of the incompressible Euler equations, the pressure is given as a solution to

∆p = −∂jui∂iuj .

Problem 7. Consider the incompressible Euler equations (see previous question):

∂tu
j + ui∂iu

j +∇jp = 0,

∂iu
i = 0.

The vorticity ω of the fluid is defined as

ω := curlu.

The vorticity is an important physical quantity; it measures, as the name suggests, “eddies” in the
fluid. It is, therefore, important to know how it changes in time and space (i.e., what the dynamics
of the vorticity is). Show that ω satisfies the following PDE:

∂tω+∇uω−∇ωu = 0.

Above, the operators ∇u and ∇ω are defined as follows. For any vector field X, ∇X is a short hand
notation for X · ∇, i.e.,

∇X := X · ∇,

where we recall that X · ∇ has been defined in class as

X · ∇ = Xi∂i.

2. Solutions

Solution 1. (a) Compute uxx(x, y) = −y cosx− sinx sin y = −u(x, y), thus u is a solution.
(b) Compute uxx(x, y) = − cosx sin y, uyy(x, y) = − cosx sin y, thus

uxx(x, y))2 + (uyy(x, y))2 = 2 cos2 x sin2 y 6= 0,

hence u is not a solution.
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Solution 2. Laplace’s equation: scalar, second order, linear. Helmholtz’s equation: scalar, second
order, linear. Linear transport equation: scalar, first order, linear. Heat equation: scalar, second
order (first-order in time), linear. Schödinger’s equation: complex scalar, second order (first-order
in time), linear. Wave equation: scalar, second order, linear. Eikonal equation: scalar, first order,
fully nonlinear. Minimal surface equation: scalar, second order, quasi-linear. Burgers’ equation:
scalar, first order, quasi-linear. Maxwell’s equation: system, first order, linear. Euler’s equations:
system, first order, quasi-linear. Navier-Stokes’ equations: system, second order (first-order in
time), quasi-linear. Einstein’s equations: it’s complicated, but when written in a specific “gauge,”
it’s a system, second order, quasi-linear.

Solution 3. In order to find F , it is useful to identify whether the PDE is linear, homogeneous,
the unknown function, etc.

(a) Unknown: u. Independent variables: x, t. Order: second. We have

P (p1, . . . , p9) = p9 − p6 − f(p1, p2).

The equation is linear and non-homogeneous.
(b) Unknown: u. Independent variables: x, y. Order: first. We have

P (p1, . . . , p5) = p5 + p3p4.

The equation is non-linear (because of the term uux).
(c) It is instructive to consider a slightly more general case, with i, j, k ranging from 1 to n.

Unknown: v. Independent variables: x1, . . . , xn. Order: third. We have

P (x1, . . . , xn, p, p1, . . . , pn, p11, . . . , pnn, . . . , p111, . . . , pnnn) = aijkpijk + p.

The equation is linear and homogeneous.
(d) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p6 + p21p
2
2p9 − (p1 + p2)

2.

The equation is linear and non-homogeneous.
(e) Unknown: u. Independent variables: x, y. Order: second. We have

P (p1, . . . , p9) = p7 + cos p3 − sin(p1p2).

The equation is non-linear (because of cosu).

Solution 4. Sums and multiplication by constants are preserved by linearity.

Solution 5. Under the assumptions, the equations become

divE = 0, (2.1)

divB = 0, (2.2)

∂B

∂t
+ curlE = 0, (2.3)

∂E

∂t
− 1

µ0ε0
curlB = 0. (2.4)

Take the curl of (2.3) and note that curl ∂∂t = ∂
∂tcurl to get

∂

∂t
curlB + curlcurlE = 0.

But curlB = µ0ε0
∂E
∂t by (2.4), thus

µ0ε0
∂2E

∂t2
+ curlcurlE = 0.
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Recalling the following identity from multivariable calculus

curlcurlf = ∇(divf)−∆f,

and using (2.1), we obtain the wave equation for E. The wave equation for B is similarly obtained.
The interpretation is that the electric and magnetic fields propagate in vacuum as waves. From

the discussion about the wave equation in class, we conclude that 1√
µ0ε0

is the speed of propagation

of the electromagnetic waves, which, from physics, we know to be equal to the speed of light (in
vacuum).

Solution 6. Taking the divergence of the momentum equation and using that ∂iu
i = 0, we find

0 = ∂j(∂tu
j + ui∂iu

j +∇jp)
= ∂t∂ju

j + ∂ju
i∂iu

j + ui∂i∂ju
j + ∂i∂

ip

= ∂ju
i∂iu

j + ∂i∂
ip,

where we denoted ∂i := δij∂j , with δ being the Kronecker-delta symbol defined as δij = δij = δij = 1

if i = j and 0 otherwise. Noting that ∂i∂i = ∆, we have the result.

Remark. Note that while Euler’s equations in principle require functions that are only once
differentiable, the above calculation assumed that the functions are in fact twice continuously
differentiable.

Solution 7. Denoting by | · | the norm in R3, observe the following identity:

1

2
∇i|u|2 =

1

2
∇i(u`u`) = u`∂iu` = u`∂`u

i + (u`∂iu` − u`∂`ui),

where ∂i is as in the last question. Next, compute

(u×ω)i = εijkuiωk = εijkujε
`n
k ∂`un

= (δi`δjn − δj`δin)uj∂`un

= un∂iun − u`∂`ui,
where we used the identity

εijkεk`n = εkijεk`n = δi`δ
j
n − δ

j
`δ
i
n,

which can be verified directly. From the foregoing we conclude that

∇uu =
1

2
∇|u|2 − u×ω,

which implies

curl∇uu = −curl(u×ω).

Let us compute the RHS:

(curl(u×ω))i = εijk∂jωk = εijk∂j(ε
`n
k ∂`un)

= εijkε `n
k ∂ju`ωn + εijkε `n

k u`∂jωn

= (δi`δjn − δj`δin)∂ju`ωn + (δi`δjn − δj`δin)u`∂jωn

= ∂nuiωn − ∂`u`︸︷︷︸
=0

ωi + ui ∂nω
n︸ ︷︷ ︸

=0

−uj∂jωi

= (∇ωu)i − (∇uω)i,

which implies the result.
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