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MATH 8110 — THEORY OF PARTIAL DIFFERENTIAL EQUATIONS

HW 7

Unless stated otherwise, the notation below is as in class.

1. Problems

Problem 1. Prove the following lemma stated (but not proven) in class: Let p > 1, kp < n,
p∗ = np

n−kp . There exist a constant K > 0 such that

‖χ1 ∗ |u|‖Lp∗ (Rn) ≤ ‖χ1Gk ∗ |u|‖Lp∗ (Rn) ≤ ‖Gk ∗ |u|‖Lp(Rn) ≤ K‖u‖Lp(Rn)

for all u ∈ Lp(Rn).

Hint: Adapt the ideas of the proof given in class of a similar, albeit simpler, inequality.

Problem 2. Prove that u ∈ W 1,p
0 (Ω) (1 ≤ p <∞, ∂Ω a C1 boundary, Ω bounded), if and only if

Tu = 0, where T is the trace operator.

Problem 3. Prove the uniqueness statement in the proof of the “Riesz representation for Sobolev
spaces” (the part that was not done in class).

2. Solutions

Solution 1. All inequalities are a direct consequence of the definitions but the last one. Using
Hölder’s inequality we have

∫
Rn\Br(x)

|u(y)||x− y|k−n dy ≤ ‖u‖Lp(Rn)

(∫
Rn\Br(x)

|x− y|(k−n)p′ dy

) 1
p′

≤ C‖u‖Lp(Rn)

(∫ ∞
r

t(k−n)p
′+n−1 dt

) 1
p′

≤ C1r
k−n

p ‖u‖Lp(Rn),

where 1
p + 1

p′ = 1 and we used that kp < n.

For τ > 0, let r be such that C1r
k−n

p ‖u‖Lp(Rn) = τ
2 . If

Gk ∗ |u|(x) =

∫
Rn

|u(y)||x− y|k−n dy > τ,

then

χrGk ∗ |u|(x) =

∫
Br(x)

|u(y)||x− y|k−n dy > τ

2
. (2.1)
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Thus,

|{x |Gk ∗ |u|(x) > τ}| ≤
∣∣∣{x |χrGk ∗ |u|(x) >

τ

2
}
∣∣∣

≤
(

2

τ

)p
‖χrGk ∗ |u|‖pLp(Rn)

≤

(
r

n
p
−k

C1‖u‖Lp(Rn)

)p
Crkp‖u‖pLp(Rn)

= C2r
n,

where we used the similar lemma about convolutions proved in class. Since

rn =

(
2C1

τ
‖u‖Lp(Rn)

)p∗
we have that

|{x |Gk ∗ |u|(x) > τ}| ≤ C2

(
2C1

τ
‖u‖Lp(Rn)

)p∗
.

Therefore, the map

u 7→ Gk ∗ |u|
is of weak type (p, p∗).

The values of p satisfying the our assumptions form an open set, so we can find p1 and p2 in that
set and 0 < θ < 1 such that

1

p
=

1− θ
p1

+
θ

p2
,

1

p∗
=

1

p
− k

n
=

1− θ
p∗1

+
θ

p∗2
.

Because p∗ > p, the Marcinkiewicz interpolation theorem implies that the map u 7→ Gk ∗ |u| is
bounded from Lp(Rn) to Lp

∗
(Rn).

Solution 2. Since the trace is continuous from W 1,p(Ω) to W 1,p(∂Ω) and every element in C∞c (Ω)

has zero trace, we conclude that Tu = 0 for u ∈W 1,p
0 (Ω).

Suppose now that u ∈ W 1,p(Ω) satisfies Tu = 0. As usual, we can reduce the proof to the case
Ω = {xn > 0}. Extend u to be zero outside Ω and denote ũ this extension. Let uj ∈ C∞(Ω) be a
sequence converging to u in W 1,p(Ω). The difference∫

Rn

ũjD
αϕ− (−1)

∫
Rn

D̃αujϕ

is a sum of integrals of the form∫
Rn−1

uj(x
1, . . . , xn−1, 0)ϕ(x1, . . . , xn−1, 0)

which tends to zero by the assumption of zero trace on u. Hence,∫
Rn

ũDαϕ− (−1)

∫
Rn

D̃αuϕ = 0

and ũ ∈ W 1,p(Rn). The result now follows from the following claim, which we prove below:

u ∈W k,p
0 (Ω) if and only if the zero extension of u belongs to W k,p(Rn).

It is not difficult to see that if u ∈W k,p
0 (Ω) then ũ ∈W k,p(Rn). To prove the converse, we argue

as in the proof of approximation of Sobolev functions by smooth functions up to the boundary,
producing the functions uj . Translate ũj by ũj,t(x) = ũj(x − ty), where y is as in that proof (but
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there we translated by + whereas here we translate by −). The translation x−ty moves the support
of ũj to inside Ω so uj,t belongs to W k,p(Rn) since ũj,t does. The restriction of uj,t to Ω belongs to

W k,p
0 (Ω) since uj,t vanishes outside a compact subset of Ω and these restrictions converge to uj as

t→ 0+.
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