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Abstract
These are notes from a series of informal meetings the authors

organized with the goal of sharing their different background in physics
and mathematics. This partially explains some lack of coherence in the
exposition.

1 The conformal group
Let (M, g) be a d-dimensional pseudo-Riemannian manifold. X is a confor-
mal Killing vector field if LXg = λg for some non-negative funcion λ : M →
R. We can compute (in local coordinates):

(LXg)µν = Xρ∂ρgµν + ∂µX
ρgρν + ∂νX

ρgµρ

If we replace the above partial derivatives by covariant derivatives the sym-
metry of the Christoffel symbols with respect to the lower indeces guarantee
that the introduced extra terms cancel out, so we also have

(LXg)µν = Xρ∇ρgµν +∇µX
ρgρν +∇νX

ρgµρ

Now recall that ∇g = 0, so the first term above vanishes gµν is a constant
for the covariant derivative, so we can pass the metric over the covariant
derivative and lower the indices of X, obtaining

(LXg)µν = ∇µXν +∇νXµ

or (LXg)µν = Xν;µ + Xµ;ν in phycisist’s notation. So the condition of being
conformal Killing can be expresses as

∇µXν +∇νXµ = λgµν
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Applying this equations for the case of commutator of two vector fields it is
possible to show that conformal Killing fields form a Lie algebra.

Contracting the above equation with gµν we obtain

λ =
2

d
∇ρX

ρ

hence

∇µXν +∇νXµ =
2

d
gµν∇ρX

ρ (1.1)

If X1, . . . , Xn are conformal Killing vector fields then exponentiating we get a
Lie group, the conformal group. This is analogous to the situation where we
have isometries: the Killing fields form the Lie algebra of the isometry grouop,
so the isometries can be obtained by exponentiating the Killing fields. Notice
also that by taking λ = 0 we recover the condition for X to be a Killing field,
so the isometries are a subgroup of the conformal group.

1.1 Example.

Consider Rp,q, i.e., Rd, d = p+q with a metric η of signature (−−− · · ·+++)
and assume d > 2. Then eq. 1.1 can be written as

∇µXν +∇νXµ =
2

d
ηµν∂ρX

ρ ≡ 2

d
ηµν(∂ ·X) (1.2)

Apply ∂ρ∂κ in the above equation, contract it with ηρν to get

∂µ∂κ(∂ ·X) + ∆(∂κXµ) =
2

d
∂µ∂κ(∂ ·X)

Using ν instead of κ we can rewrite it as

d∆∂νXµ + (d− 2)∂µ∂ν(∂ ·X) = 0

Now change the roles of µ and ν to get a similar equation, add the two
equations and use 1.2 to get

(
ηµν∆ + (d− 2)∂µ∂ν

)
(∂ ·X) = 0

This equation is second order and linear in ∂ ·X, so X is at most quadratic in
coordinates. The above equation gives ansatz for the original equation 1.2.
Using this we can actually solve 1.2; the solutions are
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1. Xµ = aµ (translations).

2. Xµ = ωµ
ν xν (rotations), where xν are coordinates.

3. Xµ = λxµ.

4. Xµ = bµx2 − (b · x)xµ, b is a constant vector.

Notice that 1 and 2 are actual isometries. Now, it’s an exercise to look at
which algebra these solutions satisfy. We find then that they satisfy the
so(p + 1, q + 1) algebra. So, for Rp,q, p + q > 2 we have that the isometry
group is SO(p, q) and the conformal group is SO(p + 1, q + 1).

2 Two dimensional case.
Now consider the case d = 2 In this case we don’t need the metric to be flat.
We also assume that our surface is a Riemannian surface (so in particular
it is orientable and admits complex coordinates)1. Introducing complex co-
ordinates (z, z̄) and using the so-called Hermitian coordinates in which the
diagonal elements of the metric vanish — gzz = gz̄z̄ = 0 — we obtain from
equation 1.1:

∇zXz = 0

Rainsing the index, using that contractions and covariant derivatives com-
mute and also that the diagonal terms of the metric vanish, we obtain that
∇zX

z̄ = 0. Since the Christoffel symbol Γz̄
zρ vanishes (direct calculation!),

the above equation gives ∂zXz̄ = 0, i.e., X z̄ is anti-holomorphic. Analogoulsy
we obtain that Xz is holomorphic, so the conformal Killing vector field is a
sum of a holomorphic and an anti-holomorphic part:

X = Xz ∂

∂z
+ X z̄ ∂

∂z̄

Since the (one-partameter family of) diffeomorphisms generated by X are
conformal transformations, we obtain that the conformal transformations
are holomorphic and a anti-holomorphic maps, as expected.

1In physics non-orientable surfaces also arise. One way of dealing with these is to take
the double orientable cover and carry out all the calculations there. In the end we mod
out by the appropriate equivalence relation which takes the cover back to the original
non-orientable surface.
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3 Witt algebra.
Now we want to find the generators; locally we can wirte the coefficients of
X as Laurent expansions:

X(z) =
∞∑

n=−∞
an+1z

n+1

X(z̄) =
∞∑

n=−∞
ān+1z̄

n+1

where we use n + 1 instead of n for convenience. So

X =
∞∑

n=−∞

(
an+1z

n+1 ∂

∂z
+ ān+1z̄

n+1 ∂

∂z̄

)

Defining −`n = an+1z
n+1 ∂

∂z
and −¯̀

n = ān+1z̄
n+1 ∂

∂z̄
, an easy calculation shows

[`n, `m] = (n−m)`n+m

[`n, ¯̀
m] = 0

[¯̀n, ¯̀
m] = (n−m)¯̀n+m

the above relations define what is called the Witt algebra.

4 Central extensions and Virasoro algebra.
Under the process of quantization, the algebra of classical observers gives rise
to an algebra of quantum operators which in general do not commute, and
therefore the order in which they appear matters. For example, classically
equivalent expressions such as anām and āman give rise, after quantization,
to ânâ†m and â†mân, which are different unless the operators commute2. In
order to deal with this problem in the quantization process, physicists adopt
the following procudure: write the operators always in the same order and
then add an extra term to take this ambiguity into account. Matematically
this is made by a central extension of the algebra.

2physicists use â to denote the quantum observable (=operator on a Hilbert space)
corresponding to the classical observable (=function) a; they also use † to denote the
adjoint operator
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Here the classical algebra is the Witt algebra. The corresponding quan-
tum algebra is obtainded by introducing a central element I which commutes
with every generator (we write L instead of ` to stress that now we are dealing
with quantum objects).

[Ln, I] = 0

[Ln, Lm] = (n−m)Ln+m + CnmI

and analogous equations for L̄n. The element I is known as central charge
or anomaly. This new algebra is known as Virasoro algebra. Using standard
rules for the commutators we can extract some properties of the coefficients
Cmn:

[Lm, Ln] = −[Ln, Lm] ⇒ Cmn = −Cnm

Jacobi identity⇒ (n−m)Cn+m,k + (m− k)Cm+k,n + (k − n)Ck+n,m = 0 (∗)
Notice that we can redefine L′n = Ln−CnI and get (plugging Ln = L′n +CnI
into [Ln, Lm] and using [Ln, I] = 0):

[L′n, L′m] = (n−m)Ln+m + (n−m)Cn+mI

So if the coefficients satisfy

Cmn = (n−m)Cn+m (∗∗)
we get

[L′n, L
′
m] = (n−m)L′n+m

[L′n, I] = 0

So if the coefficients satisfy (∗∗) then the extension is trivial in the sense
that after redefining the operators the algebra generated by the L’s and the
algebra generated by I are "decoupled". More precisely, we can think that
in this case the extension is the most trivial one: a direct sum of the algebra
generated by the L’ s with the algebra generated by I. Since we want non-
trivial extensions we look for those Cmn which are not of the form (∗∗).
Define:

(δC)mn = (m− n)Cn+m

(δC)mnk = (m− n)Cm+n,k + (n− k)Cn+k,m + (k −m)Ck+m,n
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Then a calculation shows that δ2 = 0. Then we can rewrite (∗) and (∗∗)
respectively as:

(δC)nmk = 0 (i) (closedness condition)
(δC)mn = Cmn (ii) (exactness condition)

Therefore, in order to find the non-trivial extensions, we need to find those
which satisfies (i) but not (ii). In another other, we need to compute the
cohomolgy of the complex C, i.e., the closed but not exact C’s.

Theorem 1. The only non-trivial extensions are of the form Cmn = am3δm+n,0,
a some constant.

So we have

[Ln, Lm] = (n−m)Ln+m + aδm+n,0m
3I

It is customary to redefine the operators at zero: L0 → L0 − b
2
I for some

constant b and then put b = −a, so we get

[Ln, Lm] = (n−m)Ln+m + aδm+n,0(m
3 −m)I

With these redefinitions the central charge for L−1, L0, L1 vanishes and these
elements satisfies a sl(2) algebra (which is useful when we need to find rep-
resentations).

5 Operator product expansion (OPE).
Let us write the expression for the Virasoro algebra as

[Ln, Lm] = (n−m)Ln+m + δm,−n
C

12
(m3 −m)I (?)

The constant C is called central charge. The idea is that different confor-
mal symmetries give rise to different conformal charges. The factor 1

12
is

introduced for convenience.
Consider a cilindrical worldsheet as shown in figure 1. It can be mapped

bi-holomorphically onto an annulus by z = et+iσ. Notice that slices t =
constant are mapped to the circles of radius et. The time ordering in the
worldsheet becomes radial ordering in the annulus.
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time slice

t = τ

constant radius

r = e
τ

z = e
t+iσ

t

σ

Figure 1: Mapping the worldsheet bi-holomorphically onto the annulus.

Define

T (z) =
∞∑

n=−∞
z−n−2Ln

(from now on analogous formulas will be understood for conjugate quanti-
ties). Notice that then

Ln =

∮
dz

2πi
zn+1T (z)

In specific models, T is the energy-momentum tensor (more precisely, the Tzz

component of it). If we want to pursue further this point, it is worth noticing
that under the correspondence of circles on the annulus and time slices on
the worldsheet, the above integral corresponds to an integral on a time slice,
so that Ln can be thought of a conserved charge (since these are time slice
integrals of components of the energy-momentum tensor).

For operators A and B which depend on time define their time ordering
as

T (A(t1)B(t2)) =

{
A(t1)B(t2) if t1 > t2
B(t2)A(t1) if t1 < t2

7



It follows that

[A(t), B(t)] = ( lim
t1↘t2

− lim
t1↗t2

)T (A(t1)B(t2))

(notice that the above expression is defined even though for t1 = t2 T is not).
So commutators can be thought of as time-ordering processes. Replacing
time-ordering by radial ordering, we can use an analogous expression for
defining the radial ordering R(T (z)T (w)). It follows that for |z| > |w| we
have

R(T (z)T (w)) =
C/2

(z − w)4
I +

2T (w)

(z − w)2
+

∂wT (w)

z − w
+ holomorphic part

The expansion above is called the operator product expansion and it appears
naturally in specific models. Physicists sometimes write the above expression
simply as T (z)T (w) = . . . , i.e., they omit R.

Theorem 2. The above operator product expansion is equivalent to ?.

Proof. We are going to show only one implication, i.e., that the operator
product expansion above implies the Virasoro algebra ?. The other implica-
tion is done below after introducing the axioms for a meromorphic conformal
field theory.

Write

[Ln, Lm] = [

∮
dz

2πi
zn+1T (z),

∮
dw

2πi
wm+1T (w)]

where the integration is carried over a circle around zero. Now rewrite the
above expression as

∮

small circle around 0

dw

2πi

( ∮

|z|>|w|
−

∮

|z|<|w|

) dz

2πi
zn+1wm+1R(T (z)T (w))

Deforming the countour of z-integration as shown in the figure 2 we obtain
∮

around 0

dw

2πi

∮

around w

dz

2πi
zn+1wm+1R(T (z)T (w)) =

∮

around 0

dw

2πi

∮

around w

dz

2πi
zn+1wm+1

( C/2

(z − w)4
I +

2T (w)

(z − w)2
+

∂wT (w)

z − w

)
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w w

w

Figure 2: The integral on the path on the left minus the integral on the path on
the right equals the integral on the path below.

where we do not write the integral of the holomorphic terms since it is
zero because we are integrating on a closed path.

Now expand

zn+1 = wn+1 + (n + 1)wn(z − w) +
1

2!
(n + 1)nwn−1(z − w)2

+
1

3!
(n + 1)n(n− 1)wn−2(z − w)3 + . . .

Then in the z-integral only the residues survive and we get
∮

around 0

dw

2πi

( C

12
(n3 − n)wn−2 + 2(n + 1)T (w)wn + ∂wT (w)wn+2

)

Now recall

T (w)
∞∑

k=−∞
w−k−2Lk ⇒ ∂wT (w)

∞∑

k=−∞
(−k − 2)w−k−3Lk

and plug the above expressions on the integral. Again, only residue terms
survive. For example, the first term on the integral gives a residue only when
m+1+n−2 = −1, i.e, m+n = 0, which gives a term proportional to δm,−n.
Doing something similar for the other terms we get

∮
dw

2πi
(· · · ) = (n−m)Ln+m + δm,−n

C

12
(m3 −m)I
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as desired.

5.1 Meromorphic Conformal Field Theory (MCFT)

A MCFT is a 5-tuple (F ,H, V, |0〉 , |L〉) where H is a Hilbert space, F is a
subspace of H (thought of as the Fock space or space of states), V is a map
V : F × C → End(H) (not necessarily linear in the second variable, here
End(H) denotes linear operator densely defined on H), |0〉 ∈ F and |L〉 ∈ F
are two distinguished elements (the vacuum and ??), such that the Virasoro
algebra is contained in End(H) and satisfying the following set of axioms:

1. V (|φ〉 , z) |0〉 = ezL−1 |φ〉.
2. 〈φ|V (|ξ〉 , z) |ψ〉 is a meromorphic function of z.

3. 〈φ|V (|ξ〉 , z)V (|η〉 , z′) |ψ〉 is holomorphic for |z| > |z′|.
4. 〈φ|V (|ξ〉 , z)V (|η〉 , z′) |ψ〉 =

∑
ε 〈φ|V (|η〉 , z)V (|ξ〉 , z′) |ψ〉, where ε =

1 unless both states are fermionic, in which case ε = −1.

5. V (|L〉 , z) = T (z).

6. Lm |0〉 = 0 for m ≥ 0.
Axiom 1 means that L−1 is an evolution operator; 2 is a standard regularity
assumption; 3 describes a scattering process, the condition |z| > |z′| mean-
ing causality (recall the correspondence between time ordering and radial
ordering); 4 says that the system obeys the standard statistical relations
for bosonic and fermionic variables, 5 ?? and 6 means that in the Virasoro
algebra Lm, m ≥ 0 are anihilation operates and Lm, m < 0 are creation
operators.

We can now prove the other implication of theorem 2, i.e., assuming
the Virasoro algebra (and the axioms of MCFT) let us recover the OPE as
presented above.

Because L−1e
zL−1 |φ〉 = ∂

∂z
(ezL−1 |φ〉) we have L−1 = ∂

∂z
. Denote by h and

|ψ〉 eigenvalue and eigenvector of L0, then

V (|ψ〉 , z) = ψ(z) =
∞∑

m=−∞
ψmz−m−h

V (|L〉 , z) = T (z) =
∞∑

m=−∞
Lmz−m−2
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We also have V (|L〉 , z)|z=0 = ezL−1 |0〉 |z=0, giving T (z) |0〉 |z=0 = L−2 |0〉.
Then we have the following OPE:

R(T (z)T (z′)) =
∑

(z − z′)−mV (L−2+m |L〉 , z′) =
∑

(z − z′)−mV (L−2+mL−2 |0〉 , z′)

Because we are interested only in the poles, we need to figure out only the
terms for m = 1, 2, 3. . . . . Using the commutation relation of the Virasoro
algebra:

L−2−mL−2 = L−2L−2−m + mLm−4 + δm,4
C

2
I

Acting with the above expression on the vacuum we get that it equals:

L−1L−2 |0〉 for m = 1

(L−2L0 + 2L−2) |0〉 for m = 2

3L3 |0〉 for m = 3

(
C

2
I + 4L0) |0〉 for m = 4

0 for m = 5, 6, . . .

Using the above expressions and L−1 |0〉 we get the desired OPE.

6 Kac-Moody algebra

6.1 Cohomology of Lie algebras

Let g be a finite dimensional Lie algebra. By Lie’s theorem, it corre-
sponds to a simply connected Lie group G. Since our main object of interest
is cohomology with values in R, we define it to be a trivial g-module, i.e. g

acts by zero. We will also abbreviate notation and denote Ck(g;R) by Ck(g)
and the corresponding cohomology groups Hk(g;R) by Hk(g).

Remark This works with C-coefficients as well.

The coboundary map is defined by

(δω)(x0, . . . , xk)
∑

0≤i<j≤k(−1)i+jω([xi, xj], . . . , x̂i, . . . , x̂j, . . .). (6.1)
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Observe that the cohomology groups so obtained are just the the cohomology
group of left invariant forms on G and δ is exactly d. By definition, C0(g) = R
and C1(g) = g∗ ∼= g. The first few coboundary maps translate into

(δα)(x) = 0, (6.2)
(δβ)(x, y) = −β([x, y]), (6.3)

(δγ)(x, y, z) = −γ([x, y], z)− γ([y, z], x)− γ([z, x], y). (6.4)

Then (6.2) implies that
H0(g) = R. (6.5)

Using (6.3) we see that H1(g) is exactly the kernel of δ : C1(g) → C2(g)
since the map δ : C0(g) → C1(g) is zero. Elements α in the kernel are
precisely the ones that vanish on commutators, i.e., α([x, y]) = 0 for any
x, y ∈ g. Alternatively, these can be viewed as maps from g/[g, g] to R,
whence

H1(g) ∼= g/[g, g]. (6.6)

In particular, the first cohomology vanishes for a semisimple Lie algebra.
To interpret H2(g) we need to understand the kernel of (6.4), i.e., 2-

cochains ω such that

ω(([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0. (6.7)

The restraint above is called the cocycle condition and is equivalent to ω
being closed. Any such ω defines a central extension

0 → R→ g̃ → g → 0 (6.8)

with the Lie bracket on g̃ given by

[(x, s), (y, t)] := ([x, y], ω(x, y)). (6.9)

The bracket satisfies the Jacobi identity due to (6.7) and is skew since ω is.
Conversely, given a central extension (6.8), the bracket on g̃ is defined as in
(6.9) and ω must satisfy (6.7). Thus, the central extensions of g by R are
in bijective correspondence with the 2-cocycles. It can be shown that the
2-cocycles ω, ω′ are cohomologous if and only if the corresponding central
extensions g̃, g̃′ are equivalent. Thus,

Proposition 6.1.1. Equivalence classes of central extensions of g by R are
in bijective correspondence with elements of H2(g).
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If g is semisimple, then it turns out that there are no non-trivial central
extensions since H2(g) ∼= H2(G) = 0.

To discuss H3(g;R), we shall restrict ourselves to algebras such that
H1(g;R) = 0 = H2(g;R). The Lie algebras of any connected compact
semisimple Lie group G satisfies this property. Since g ∼= g∗ as g-modules,
the space of (symmetric) invariant bilinear forms on g, Bil(g) = (S2g)g, is
isomorphic to (S2g∗)g. With this identification, define a map

ϕ : (S2g∗)g → (Λ3g∗)g

B 7→ ϕ(B) : (x, y, z) → B([x, y], z). (6.10)

The 3-form ϕ(B) is antisymmetric since B is invariant and symmetric and [, ]
is skew. The invariance follows from the Jacobi identity and the invariance
of B. The following proposition provides the connection between Bil(g) and
H3(G;R) ∼= (Λ3g∗)g.

Proposition 6.1.2. For a semisimple Lie algebra g, ϕ : (S2g∗)g → (Λ3g∗)g

is an isomorphism.

In view of this result and the discussion preceding it, we conclude that
Bil(g) is isomorphic to H3(G;R). If G is simple, then it is one-dimensional
since any such bilinear form is a multiple of the Killing form on g.

6.2 Generalized Cartan matrices

For any finite dimensional complex semisimple Lie algebra g with Car-
tan subalgebra h, let (, ) denote the (non-degenerate) Killing form. This is
non-degenerate when restricted to h and induces a non-degenerate form on h∗

as well. Fix a reduced root system R ⊂ h∗ with a polarization R = R− tR+

and the corresponding system of simple roots {αi}r
i=1. If one chooses for each

root α a non-zero element eα in the root space gα, then g is generated by 3r
generators {ei := eαi

, fi := e−αi
, hi := hαi

| i = 1, . . . , r}. The subspaces n±
consisting of positive and negative roots respectively are subalgebras of g. In
fact, n+ is generated by the ei’s, n− is generated by the fi’s and hi’s form a
basis of h. In other words

g = n+ ⊕ h⊕ n−. (6.11)
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After suitably normalizing, the generators satisfy the Jacobi identity and the
Serre relations (sometimes also known as Chevalley-Serre relations)

[hi, hj] = 0 (6.12)
[hi, ej] = aijej (6.13)
[hi, fj] = −aijfj (6.14)
[ei, fj] = δijhi (6.15)

(ad ei)
1−aijej = 0 (6.16)

(ad fi)
1−aijfj = 0 (6.17)

where the entries of the Cartan matrix A = (aij) are given by

aij = 〈hαi
, αj〉 = 2(αi, αj)/(αi, αi). (6.18)

It is an integer valued r × r (rank g = r) matrix satisfying

aii = 2 (6.19)
aij = 0 ⇔ aji = 0 (6.20)
aij ≤ 0 for i 6= j (6.21)

detA > 0. (6.22)

This implies that rank A = r. Observe that A = DS where

Dij = δij/(αi, αi), Sij = 2(αi, αj)

and S is positive definite since {αi}’s span h∗. Hence the last condition can
be replaced by

detA{i} > 0, i = 1, . . . , r (6.23)

where detA{i} are the principal minors of A. Since the off-diagonal entries
are non-positive integers, it can be shown that

aij ∈ {−3,−2,−1, 0, 2} (6.24)

which is equivalent to detA > 0. The Weyl group can be constructed directly
from the Cartan matrix, viz., the rows of A determine the reflection against
the simple roots.

Conversely, given a reduced root system R with a polarization and a
set of simple roots {αi}r

i=1, one may use the Serre relations to define a Lie
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algebra g(R). It is known that this is isomorphic to a semisimple Lie algebra
g with root system R, the key step of the proof is showing that g(R) is
finite dimensional by using the Weyl group. This sets up an isomorphism
between the set of isomorphism classes of reduced root systems and the set
of isomorphism classes of semisimple Lie algebras.

One may drop the condition (6.22), to define

Definition 6.2.1. A generalized Cartan matrix A is an r× r integer valued
matrix satisfying (6.19),(6.20) and (6.21). It is of finite type if it satisfies
(6.22), i.e., positive definite. It is of affine type if all the proper principal
minors are positive but detA = 0, i.e., positive semidefinite. Otherwise, it is
declared to be of indefinite/hyperbolic type.

Given A, the Serre relations define the corresponding abstract complex
Lie algebra g(A), called a Kac-Moody algebra. If A is of finite type, then g(A)
is finite dimensional semisimple Lie algebra. Otherwise, it is infinite dimen-
sional. The affine Lie algebras are the Kac-Moody algebras corresponding to
generalized Cartan matrices of affine type. It forms an important subclass of
Kac-Moody algebras. If g(A) is affine, then A has corank 1, i.e., it’s kernel
is one dimensional. Define the Coxeter labels (ai)

r
i=1 and dual Coxeter labels

(ai)r
i=1 to be the left and right eigenvectors of A respectively with eigenvalue

0, i.e., r∑
i=1

aiaij = 0 =
r∑

i=1

aija
j (6.25)

together with the normalization condition

min{ai| i = 1, . . . , r} = 1 = min{ai| i = 1, . . . , r}. (6.26)

This makes sense since one can choose the eigenvector in either case to be
positive, i.e., ai > 0 (resp. ai > 0).

Let A be indecomposable. If it is of finite type, then g(A) is simple,
In contrast, if A is of affine type, g(A) possess a non-trivial center. For any
constant ζ the element

k := ζ

r∑
i=1

aihi (6.27)

is a central element since [k, hi] = 0 by definition and

[k, ej] = ζ

r∑
i=1

aiaijej = 0 = −ζ

r∑
i=1

aiaijfj = [k, fj]
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by (6.25). Since the kernel of A is one dimensional, k spans Z(g(A)). The
existence of such a central element allows for a central extension of Lie alge-
bras

0 → C k
↪→ g(A) → g(A)/C→ 0. (6.28)

We will restrict ourselves to a certain subclass of affine algebras where the
role of g(A)/C is played by the loop algebra Lg. It is just the Lie algebras
associated with the loop group LG, the space of smooth maps from S1 to a
Lie group G. We shall further restrict to semisimple groups.

6.3 Affine algebras

At the level of Lie algebras, the central extensions

R→ L̃g → Lg

correspond precisely to invariant symmetric bilinear forms on g. As a vector
space L̃g is Lg⊕ R, and the bracket is given by

[(ξ, λ), (η, µ)] = ([ξ, η], ω(λ, µ)) (6.29)

for ξ, η ∈ Lg and λ, µ ∈ R. Here ω : Lg× Lg → R is the bilinear map

ω(ξ, η) =
1

2π

∫ 2π

0

〈ξ(θ), η′(θ)〉 dθ (6.30)

for a chosen symmetric invariant from on g. Recall that if g is semisimple
then every invariant bilinear form is symmetric.

For (6.29) to define a Lie bracket, ω must be skew, which follows from
integrating by parts in (6.30), and must satisfy the Jacobi/cocycle condition

ω([ξ, η] , ζ) + ω([η, ζ] , ξ) + ω([ζ, ξ] , η) = 0. (6.31)

This can be proved using the fact that 〈, 〉 is invariant and
[ξ, η]′ = [ξ′, η] + [ξ, η′] .

If f ∈ Diff+(S1) then it induces a map f ∗ : Lg → Lg via precomposing.
Then

ω(f ∗ξ, f ∗η) =
1

2π

∫ 2π

0

〈ξ(f(θ)), η′(f(θ))〉 f ′(θ)dθ =
1

2π

∫ 2π

0

〈ξ(τ), η′(τ)〉 dτ = ω(ξ, η),

(6.32)
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where τ = f(θ). Thus, ω is Diff+(S1) invariant and Diff+(S1) acts as a group
of diffeomorphisms on L̃g. We will see later that it also acts on the group
extension. Notice that ω is invariant under conjugation by constant loops,
i.e.,

ω(gξ, gη) = ω(ξ, η)

since 〈, 〉 is invariant (here gξ denotes the adjoint action).
There are essentially no other cocycles other than ω defined by (6.30).

More precisely, we may only consider invariant cocycles since if α is a cocycle,
then gα defined by gα(ξ, η) = α(g−1ξ, g−1η) defines an equivalent extension,
viz,

g ⊕ Id : (Lg⊕ R, α) → (Lg⊕ R, gα), (ξ, λ) 7→ (gξ, λ)

is an isomorphism of Lie algebras. Similarly, the extension given by the
invariant cocycle ∫

G

gα dµ

is isomorphic to the one given by α. We have

Proposition 6.3.1. If g is semisimple then the only continuous G-invariant
cocycles on Lg are given by (6.30).

Proof Any cocycle ω : Lg × Lg → R can be extended to a complex
bilinear map ω : LgC×LgC → C. Since an element ξ ∈ LgC can be extended
in a Fourier series

∑
ξkz

k with ξk ∈ gC, by continuity ω is determined by
values on ξkz

k. Write ωp,q(ξ, η) = ω(ξpz
p, ηqz

q) for ξ, η ∈ gC; this is a G-
invariant bilinear map gC × gC → C which is necessarily symmetric since gC
is semisimple. Then

ωp,q(ξ, η) = −ω(ηzq, ξzp) = −ωq,p(η, ξ) = −ωq,p(ξ, η).

The cocycle identity translates to

ωp+q,r + ωq+r,p + ωr+p,q = 0, ∀ p, q, r. (6.33)

It can be shown that ωp,q = 0 if p + q 6= 0 and ωp,−p = p ω1,−1. If we write
ξ =

∑
ξpz

p and η =
∑

ηqz
q, then

ω(ξ, η) =
∑

p

p ω1,−1(ξp, η−p). (6.34)
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On the other hand

i

2π

∫ 2π

0

ω1,−1(ξ(θ), η
′(θ))dθ =

∑
p,q

−1

2π

∫ 2π

0

qω1,−1(ξp, ηq)e
i(p+q)θdθ

=
∑

p

p

2π

∫ 2π

0

ω1,−1(ξp, η−p)dθ,

which equals (6.34). Thus, ω is completely determined by ω1,−1 and is of the
form (6.30). ¤
Notation Let Bil(g) denote the space of invariant bilinear forms on g and
K its dual. We also denote the central extension L̃g of Lg corresponding to
any B ∈ Bil(g) by g̃B.

The above result determines the universal central extension of Lg, viz,

0 → K → g̃univ → Lg → 0 (6.35)

and it is universal because any extension of Lg by R (corresponding to B ∈
Bil(g)) can be obtained as the push-forward

0 // K //

B

²²

g̃univ //

²²

Lg //

id
²²

0

0 // R // g̃B
// Lg // 0

(6.36)

Now assume that g is a semisimple Lie algebra corresponding to a
connected compact Lie group G. Then it follows from §1.5 (6.1.2) that
K ∼= H3(G;R). If G is simple then H3(G;R) = R, whence only one central
extension exist up to scaling.
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