
NEGATIVE NORM SOBOLEV SPACES AND APPLICATIONS

MARCELO M. DISCONZI

Abstract. We review the definition of negative Sobolev norms. As applications, we derive a nec-
essary and sufficient condition for existence of weak solutions of linear PDEs, and give Egorov’s
counter-example of a PDE that is not locally solvable at the origin.

In what follows, the multi-index and sum conventions are adopted. The same letter is used to
denote several different constants that appear in the estimates. Some references for the ideas here
presented are [1, 2, 3, 4, 5].

1. Negative Sobolev norms.

Let Ω ⊂ Rn be open. Recall that for any s = 0, 1, . . . , one defines the inner product

(u, v)s =
∑
|α|≤s

∫
Ω
∂αu∂αv,

and the completion of C∞(Ω) w.r.t. the norm ‖ · ‖s given by the inner product (·, ·)s is the sth Sobolev
space Hs(Ω). Notice that (·, ·)0 is the standard L2-inner product. Although we have introduced the
general definition, we will be mostly concerned with real valued functions, in which case the complex
conjugation in ∂αv can be dropped.

We first want to characterize the duals of Sobolev spaces1. These are among the most important
dual spaces for applications in PDE.

For any v ∈ L2(Ω), define Fv : Hs(Ω)→ C by Fv(u) = (u, v). It follows that

|Fv(u)| ≤‖ u ‖0‖ v ‖0≤‖ u ‖s‖ v ‖0,

so Fv is a bounded linear functional on Hs(Ω).

Definition 1.1. Define the negative Sobolev norm ‖ · ‖−s by:

‖ v ‖−s=‖ Fv ‖= sup
u∈Hs(Ω)

|(u, v)0|
‖ u ‖s

,

where v ∈ L2(Ω). Clearly, ‖ · ‖−s is indeed a norm. Define H−s(Ω) as the completion of L2(Ω) w.r.t.
the norm ‖ · ‖−s.

Remark 1.2. Since H−s(Ω) is a completion, it is a Banach space. Later on we shall endow it with
an inner product, making it into a Hilbert space.

Remark 1.3. It is important to stress that much of the modern literature uses a slightly different
definition, implying that H−s(Ω) is the dual of Hs

0(Ω), and not of Hs(Ω), as in the theorem below.
Here, we follow the convention of Lax [4].

Theorem 1.4. Hs(Ω)∗ = H−s(Ω).

1Even though Hs(Ω) is naturally a Hilbert space, for the most part, we will be treating it merely as a Banach space.
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Proof. Put Λ = {Fv | v ∈ L2(Ω)}, where Fv is as defined above. We claim that Λ is dense in
Hs(Ω)∗. Indeed, if this is not the case, take F ∈ Hs(Ω)∗ − Λ and then, by (one of the corollaries
of) Hahn-Banach, there exists a ` ∈ Hs(Ω)∗∗ such that `(F ) 6= 0 and `|Λ ≡ 0 . By reflexivity, there

exists f` ∈ Hs(Ω) such that `(F̃ ) = F̃ (f`) for every F̃ ∈ Hs(Ω)∗. But then Fv(f`) = `(Fv) = 0
for all Fv ∈ Λ. Thus, 0 = Fv(f`) = (f`, v) for all v ∈ L2(Ω), what implies f` = 0, a contradiction.
Therefore, Λ is dense and Λ = Hs(Ω)∗.

Now define α : H−s(Ω) → Hs(Ω)∗ by α(v) = limn Fvn , where v = limn vn, vn ∈ L2(Ω), limn vn
means limit in H−s(Ω), and limn Fvn is limit in the operator norm.

First we check that α is well defined. If v = limn vn = limwn, then, since ‖ vn ‖−s=‖ Fn ‖, we
get ‖ Fvn − Fwn ‖=‖ Fvn−wn ‖=‖ vn − wn ‖−s→ 0 as n → ∞, showing that α is well defined, i.e.,
α(v) = limn Fvn = limn Fwn .

Next, we claim that α is one-to-one and onto. Assume α(v) = α(w). Then 0 = limn ‖ Fvn−Fwn ‖=
limn ‖ vn − wn ‖−s and so v = w, showing injectivity. By the density property proved above, α is
onto.

Finally, notice that ‖ α(v) ‖=‖ Fv ‖=‖ v ‖−s, and so α is an isometric isomorphism (i.e., a Banach
space isomorphism). �

Using the above theorem, we can extend the notation (u, v)0 to pairs, where v ∈ H−s(Ω), and
u ∈ Hs(Ω), by letting (u, v)0 denote the action of the functional v on u. More explicitly, following
the construction of theorem 1.4, one writes (u, v)0 = Fv(u). Naturally, Fv(u) is the L2-inner product
if v ∈ L2(Ω), but Fv(u) = α(v)(u) if v ∈ H−s(Ω) − L2(Ω) (L2(Ω) ⊂ H−s(Ω), see remark below),
where α is the map constructed in theorem 1.4, and given by α(v) = limFvn , with vn → v in H−s(Ω).
Now if Fvn → Fv ≡ α(v) in the operator norm topology, then Fvn ≡ (vn, u)0 → Fv(u). Indeed

Fv(u) = Fv(u)− Fvn(u) + Fvn(u) = Fv−vn(u) + (vn, u)0,

and |Fv−vn(u)| ≤‖ Fv−vn ‖‖ u ‖s=‖ v − vn ‖−s‖ u ‖s→ 0 when vn → v in H−s(Ω). Thus, when
extending the notation (u, v)0, one can also write (u, v)0 = lim(vn, u)0.

Remark 1.5. We have the following facts:
(i) ‖ v ‖−s≤‖ v ‖0, so Hs(Ω) ⊂ L2(Ω) ⊂ H−s(Ω).
(ii) Generalized Cauchy-Schwarz inequality:

|(u, v)0| ≤‖ u ‖s‖ v ‖−s .

(recall that we extended the notation (u, v)0).

Putting all of above together yields:

Theorem 1.6. Every bounded linear functional on Hs(Ω) can be represented by Fv, for some v ∈
H−s(Ω), i.e., if F ∈ Hs(Ω)∗ then F (u) = (u, v)0 for all u ∈ Hs(Ω).

Definition 1.7. Let β : Hs(Ω)∗ → Hs(Ω) be given by the Riesz representation theorem. Then, it
is easily checked that the following defines an inner product on H−s(Ω):

(u, v)−s = (β ◦ α(u), β ◦ α(v))s,

where α is as in theorem 1.4.

Notice that if vn → v in H−s(Ω), then Fvn → Fv in the operator norm topology, since ‖ Fvn −
Fv ‖=‖ vn−v ‖−s→ 0; i.e., Fv(u) = (u, v)0 = limn(u, vn)0, since |(u, v−vn)0| ≤‖ u ‖s‖ v−vn ‖−s→ 0.
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Therefore, √
(v, v)−s =

√
(β ◦ α(v), β ◦ α(v))s =‖ β ◦ α(v), β ◦ α(v) ‖s

=‖ α(v) ‖=‖ Fv ‖= sup
u∈Hs(Ω)

|(u, v)0|
‖ u ‖s

=‖ v ‖−s,

where we used that β is an isometry. Hence (·, ·)−s gives (generates) ‖ · ‖−s. Because Hilbert spaces
are reflexive, we could conclude from the above that H−s(Ω)∗ = Hs(Ω)∗∗ = Hs(Ω), but a more
specific form of this result will be needed, as stated in the following theorem.

Theorem 1.8. H−s(Ω)∗ = Hs(Ω). Moreover, any G ∈ H−s(Ω)∗ can be represented by a unique
u ∈ Hs(Ω) via G(v) = Gu(v) = (u, v)0 for all v ∈ H−s(Ω).

Proof. For u ∈ Hs(Ω), set Gu(v) = (u, v)0, v ∈ H−s(Ω). By the generalized Cauchy-Schwarz
inequality, it is seen that that Gu ∈ H−s(Ω)∗. We claim that ‖ Gu ‖=‖ u ‖s. To see this, first, notice
that |Gu(v)| ≤‖ u ‖s‖ v ‖−s for every v ∈ H−s(Ω), so ‖ Gu ‖≤‖ u ‖s. For the opposite inequality,
consider

‖ Gu ‖= sup
v∈H−s(Ω)

|Gu(v)|
‖ v ‖−s

= sup
v∈H−s(Ω)

|(u, v)0|
‖ v ‖−s

.

By theorem 1.6, |(u,v)0|
‖v‖−s = |Fv(u)|

‖Fv‖ , for all v ∈ H−s(Ω). Choose v′ such that Fv′(u) =‖ u ‖s and

‖ Fv′ ‖= 1; this can be done by one of the corollaries of the Hahn-Banach theorem. Then

‖ Gu ‖≥ sup
F∈Hs(Ω)∗

|F (u)|
‖ F ‖

≥‖ u ‖s .

Let Λ = {Gu | u ∈ Hs(Ω) ⊂ H−s(Ω)∗}. An argument similiar to that of theorem 1.4 shows that
Λ is dense in H−s(Ω)∗. If a sequence {un} converges to u in Hs(Ω) then, for any v ∈ H−s(Ω), we
have Gun(v) = (un, v) → (u, v) = Gu(v). Define γ : Hs(Ω) → H−s(Ω) by γ(u) = Gu. Clearly γ is
one-to-one and onto, and ‖ γ(u) ‖=‖ Gu ‖=‖ u ‖s, so γ is an isometric isomorphism. �

2. Applications to PDEs

Definition 2.1. Consider a linear PDE given by Lu = f in Ω, f ∈ Ht(Ω), t ∈ Z. We say that it has
a weak solution u ∈ Hs(Ω), s ∈ Z, if (u, L∗v)0 = (f, v)0 for all v ∈ C∞c (Ω), where L∗ is the formal
adjoint of L.

Remark 2.2. Notice that no boundary conditions are imposed on u since v ∈ C∞c (Ω).

Recall that if Lu = aijuxixj + biuxi + cu, which is the case for most applications, then L∗u =

aijuxixj + (aij
xj
− bi)uxi + (c − bi

xi
+ aij

xixj
)u. The idea is that we can integrate by parts to get

L∗. The coefficients are assumed to be sufficiently regular as to justify these calculations and the
manipulations below.

Theorem 2.3. A necessary and sufficient condition for Lu = f to have a weak solution u ∈ H−s(Ω),
for each f ∈ H−t(Ω), is that there exists a constant C such that

‖ v ‖t≤ C ‖ L∗v ‖s

for all v ∈ C∞c (Ω).
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Proof. Assume the estimate. Put X = L∗C∞c (Ω) ⊂ Hs(Ω), and consider Ff ≡ F : X → R given by
F (L∗v) = (f, v)0. Notice that this is well defined because the estimate says that if ‖ L∗v ‖s= 0, then
‖ v ‖t= 0. We claim that F is bounded on the subspace X ⊂ Hs(Ω). Estimate

|F (L∗v)| ≤ |(f, v)0| ≤‖ f ‖−t‖ v ‖t≤ C ‖ f ‖−t‖ L∗v ‖s,

which shows boundedness. By Hahn-Banach, F extends to F̃ on all Hs(Ω), i.e., F̃ ∈ Hs(Ω)∗.

Because Hs(Ω)∗ = H−s(Ω), by theorem 1.8, there exists a u ∈ H−s(Ω) such that F̃ (w) = (u,w)0 for
all w ∈ Hs(Ω). In particular if w ∈ X,

(u,w)0 = (u, L∗v) = F̃ (L∗v) = F (L∗v) = (f, v)0,

i.e., (u, L∗v)0 = (f, v)0, for all v ∈ C∞c (Ω), showing existence.
Now suppose that for each f ∈ H−t(Ω), there exists a u ∈ H−s(Ω) such that Lu = f weakly, i.e.,

(u, L∗v)0 = (f, v)0 for all v ∈ C∞c (Ω). We write u = uf when we want to emphasize the dependence
of u on f . We have

|(f, v)0| = |(u, L∗v)0| ≤‖ uf ‖−s‖ L∗v ‖s≤ Cf ‖ L∗v ‖s,

for some constant Cf depending on f . But v ∈ Ht(Ω) 7→ (f, v)0 ≡ Gf (v) defines a bounded linear
functional on Ht(Ω), i.e., Gf ∈ Ht(Ω)∗. By Riesz, Gf is represented by an element β(f) ∈ Ht(Ω),
and the map β : Ht(Ω)∗ → Ht(Ω) is an isometry. Therefore,

Cf ‖ L∗v ‖s≥ |(f, v)0| = |(β(f), v)t|, (2.1)

or ∣∣∣(β(f),
v

‖ L∗v ‖s
)t

∣∣∣ ≤ Cf .
(notice that from the assumption that Lu = f is always solvable, it follows that L∗v = 0⇒ v = 0).
Since β is an isomorphism, any w ∈ Ht(Ω) is of the form β(f) for some f . Thus, we obtain a family
of bounded functionals γv, given by

γv(w) = (w,
v

‖ L∗v ‖s
)t

with the property that, for each v, |γv(w)| ≤ Cw. Invoking the principle of uniform boundedness, we
conclude that ‖ γv ‖≤ C for some constant independent of v. Then

C ≥‖ γv ‖= sup
w∈Ht(Ω)

|γv(w)|
‖ w ‖t

≥
∣∣∣( v

‖ L∗v ‖s
,

z

‖ z ‖t
)t

∣∣∣,
for any z ∈ Ht(Ω). Choosing z = v gives

‖ v ‖2t
‖ L∗v ‖s‖ v ‖t

≤ C,

or ‖ v ‖t≤ C ‖ L∗v ‖s, finishing the proof. �

3. A PDE which is not locally solvable at the origin.

As an immediate application of the above theorem we shall give an example of a PDE which has
no solution in any neighborhood of the origin. The result is remarkable once we take into account
that such PDE is linear and has smooth coefficients. This example is due to Egorov [1, 2].

Definition 3.1. Consider a linear differential operator L. We say that L is locally solvable at the
origin if given f ∈ C∞c (Ω1), Ω1 ⊂ Rn containing the origin, there exists u ∈ H−s(Ω2) solving Lu = f
in the weak sense, for some s ∈ N and some Ω2 ⊂ Ω1.
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Consider the operator Lu = utt − a2(t)uxx + b(t)ux, where a, b ∈ C∞(R) (notice that this is a
degenerate hyperbolic equation if a vanishes at some point). The goal is to construct a, b such that
the necessary and sufficient condition of theorem 2.3 is violated. We need he following preliminary
lemma which refines the necessary condition for this particular L.

Lemma 3.2. Consider the above operator L. If Lu = f always has a solution in fixed Ω ⊂ R2,
0 ∈ Ω, then there exist a constant C and a N ∈ N such that

‖ v ‖0≤‖ L∗v ‖N

for all v ∈ C∞c (Ω).

Proof. By the theorem 2.3 there exist s, t ∈ Z and a constant C such that

‖ v ‖s≤ C ‖ L∗v ‖t

for all v ∈ C∞c (Ω). If s ≥ 0 then choose N > t and we are done because in this case ‖ v ‖0≤‖ v ‖s.
Otherwise, notice that ∂αx v ∈ C∞c (Ω) if v ∈ C∞c (Ω), so ‖ ∂αx v ‖s≤ C ‖ ∂αxL∗v ‖t. Since L∗v =
vtt − a2(t)vxx + b(t)vx we have

‖ vtt ‖s−1≤ C(‖ L∗v ‖s−1 + ‖ vxx ‖s−1 + ‖ vx ‖s−1) ≤
C(‖ L∗v ‖s−1 + ‖ vx ‖s + ‖ v ‖s) ≤ C ‖ L∗v ‖t+1

where we used that we may assume t ≥ s. Hence

‖ v ‖s+1≤ C(‖ v ‖s + ‖ vxx ‖s−1 + ‖ vtt ‖s−1) ≤
C(‖ L∗v ‖t + ‖ L∗v ‖t+1≤ C ‖ L∗v ‖t+1

We may repeat these arguments to obtain

‖ v ‖s+2≤ C ‖ L∗v ‖t+2, . . . , ‖ v ‖s+n≤ C ‖ L∗v ‖t+n

Then chose n such that s+ n = 0 and set N = t+ n �

Theorem 3.3. Consider again the operator L defined above. There exist a, b ∈ C∞(R) such that
given f ∈ C∞(Ω) with Ω ⊂ R2 some neighborhood of the origin, Lu = f has no solution u ∈ H−s(Ω)
for any s ∈ N.

Remark 3.4. Notice that this does not quite say yet that L is not locally solvable.

Proof. Define

a(t) =

{
e−t

2−sin−2( 1
t
) t > 0

0 t ≤ 0

b(t) =

{
2ξ′(t)− a′(t) t > 0

0 t ≤ 0

where ξ = sin−4(1
t ). We left as an exercise to check that these functions are smooth. Notice that a

oscillates very fast with the intervals Iµ = ( 1
π(µ+1) ,

1
πµ). The idea is to violate the inequality of lemma

3.2 by constructing a sequence of functions vµλ ∈ C∞c (Iµ× (− 2
λ ,

2
λ)) which makes he right-hand side

of the necessary condition on the above lemma smaller than the left-hand side for large µ, λ.
Recall that L∗v = vtt − a2(t)vxx + b(t)vx. We look for approximate solutions to L∗v = 0 with

v ∈ C∞c (Iµ×(− 2
λ ,

2
λ)). It turns out that this can be easily done with separation of variables if we make
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a simplifying coordinate change to get rid of the vxx term. Namely, set t̄ = t and x̄ = x−
∫ t

0 a(t′)dt′.
Clearly this is a smooth change of coordinates in a neighborhood of the origin. Then

vt =
∂v

∂t̄

dt̄

dt
+
∂v

∂x̄

dx̄

dx
=
∂v

∂t̄
− a∂v

∂x̄

vtt =
∂2v

∂t̄2
− 2a

∂2v

∂x̄∂t̄
+ a2 ∂

2v

∂x̄2
− a′ ∂v

∂x̄

vx =
∂v

∂x̄

dx̄

dx
+
∂v

∂t̄

dt̄

dx
=
∂v

∂x̄

vxx =
∂2v

∂x̄2

So in the new coordinates

L∗v =
∂2v

∂t̄2
− 2a

∂2v

∂x̄∂t̄
− (b+ a′)

∂v

∂x̄

=
∂2v

∂t̄2
− 2a

∂2v

∂x̄∂t̄
− 2ξ′a

∂v

∂x̄

From now on we drop the bars on the new coordinates in order to simplify notation. We look for an
approximate solution of the form

vµλ(t, x) =
n∑
i=1

1

λi
zi(t)wi(λx)

in C∞c (Jµλ), where Jµλ = Iµ × (− 1
λ ,

1
λ); that is zi ∈ C∞c (Iµ) and wi ∈ C∞c (−1, 1). To see how to

choose zi and wi we calculate

L∗vµλ = −λ2aw′0(z′0 + ξ′z0) + [z′′0w0 − 2aw′1(z′1 + ξ′z1)]+

1

λ
[z′′1w1 − 2aw′2(z′2 + ξ′z2)] + · · ·+ 1

λn
z′′nwn

It is clear that we should choose wi so that w′i+1 = wi. This can be accomplished by taking
wn ∈ C∞c (−1, 1) and setting

wi =
( d
dx̃

)n−i
wn(x̃), where x̃ = λx

Then inductively set

z0(t) = e−ξ(t)

zi+1(t) = e−ξ(t)
∫ t

0

z′′i (s)

2a(s)
eξ(s)ds

Observe that each zi ∈ C∞c (Iµ) since exp(− sin−4(1
t )) dominates

z′′i
2ae

ξ because this last expression is

of order o(t−α exp(β sin−2(1
t )) for every α, β > 0.

With these choices of zi, wi we have that vµλ ∈ C∞c (Jµλ). Moreover

‖ L∗vµλ ‖HN (Jµλ)≤ CµnNλ−N

where CµnN is independent of λ. By choosing λ sufficiently large we also have

‖ vµλ ‖2L2(Jµλ)≥
∫
Jµλ

e−ξ(t)w0(λx)dtdx−Dµnλ
−1
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where Dµn does not depend on λ nor N . But∫ 1
πµ

1
π(µ+1)

e−2 sin−4( 1
t
)dt =

∫ πµ

π(µ+1)
e−2 sin−4(t̃)dt̃

≥ k−4

∫ π

0
e−2 sin−4(t̃)dt̃ where t̃ =

1

t

We also have ∫ 1
λ

− 1
λ

w2
0(λx)dx =

∫ 1

−1
w2

0(x̃)λ−1dx̃ ≥ λ−1Cn where x̃ = λx

so that ‖ vµλ ‖2L2(Jµλ)≥ Eµnλ
−1

It follows that for large λ and µ we can violate the inequality on lemma 3.2 for any given C and
N . �

Now we can refine this result in order to obtain that L is not locally solvable at the origin. This
is an application of Baire’s Category Theorem.

Corollary 3.5. There exists f ∈ Cc(R2) such that Lu = f has no solution u ∈ H−s(Ω) for any
s ∈ N and any Ω ⊂ R2 containing the origin.

Proof. For a fixed Ω which contains the origin define

X(Ω) = {f ∈ C∞c (R2) | Lu = f has a solution u ∈ H−s(Ω) for some s ∈ N}
Xs(Ω) = {f ∈ C∞c (R2) | Lu = f has a solution u ∈ H−s(Ω) such that ‖ u ‖−s≤ |s|+ 1}

(throughout the proof the equality Lu = f is to be understood in the week sense). Notice that
X(Ω) = ∪∞s=−∞Xs(Ω). We are going to show that for each s the space Xs(Ω) is nowhere dense. For
this we first recall the topological properties of Xs(Ω). The topology on Xs(Ω) is that given due to
the fact that Xs(Ω) is a Fréchet space and it is generated by open sets

Uα1,...,αk;ε = {x ∈ Xs(Ω) | ‖ x ‖α1< ε, . . . , ‖ x ‖αk< ε}

where ‖ · ‖αi is the collection of semi-norms. This means that in this topology a sequence {xn}
converges to an element x if and only if limn ‖ xn − x ‖`= 0 for every semi-norm ‖ · ‖`. The
collection of semi-norms on Xs(Ω) is given by the Sobolev norms ‖ · ‖r, r ∈ N.

First we claim that Xs(Ω) is closed. To see this, suppose that {fj} ⊂ Xs(Ω) is such that fj → f .
For each j there exists a uj such that Luj = fj and ‖ u ‖−s≤ |s| + 1. Since bounded sequences on
Hilbert spaces have weakly convergent sub-sequences, we have that ujk converges weakly inH−s(Ω) to
some u, so (ujk , L

∗v)→ (u, L∗v) for all v ∈ C∞c (Ω); we also have (fjk , v)→ (f, v) for all v ∈ C∞c (Ω).
Then (u, L∗v) = (f, v) and so Lu = f weakly. Hencef ∈ Xs(Ω) because ‖ u ‖−s≤ |s|+ 1.

We know show that Xs(Ω) has empty interior. Let f ∈ Xs(Ω) be arbitrary. By the theorem,

there exists f̂ ∈ C∞c (Ω) such that Lu = f̂ has no solution for any s ∈ N. Now, if f + tf̂ ∈ Xs(Ω)

then there exists w ∈ H−s(Ω) with Lw = f + tf̂ . Also, since f ∈ Xs(Ω), there exists z ∈ H−s(Ω)

such that Lz = f . But then tL(w − z) = tf̂ , contradiction. Thus, since f + tf̂ → 0 as t → 0 and

f + tf̂ 6∈ Xs(Ω) for any t 6= 0 we see that f can not be an interior point.
We conclude from the above that X(Ω) = ∪∞s=−∞Xs(Ω) is of first category.
Set

Yi = {f ∈ C∞c (R2) | Lu = f has a solution u ∈ H−s(Ωi) for some s ∈ N}
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here, {Ωi}∞i=1 is a countable basis of open sets containing the origing (for example, take all open disks
containing the origin with rational radius and rational center). By above each Yi is of first category.
By Baire category theorem C∞c (R2) 6= ∪∞i=1Yi. Therefore there exists a nonnull f ∈ C∞c (R2)−∪∞i=1Yi
and such a f has the desired property. �

4. Techniques for solving boundary value problems.

We now give another application of theorem 2.3. Consider the BVP{
Lu = f

Bu|∂Ω = 0

where L is linear and Bu could be Dirichlet, Neumann, Robin or something different for a particular
kind of equation

Definition 4.1. Consider the boundary value problems:{
Lu = f

Bu|∂Ω = 0
(∗)

{
L∗v = g

B∗v|∂Ω = 0
(4.1)

and let

C∞B (Ω) = {u ∈ C∞(Ω) | Bu|∂Ω = 0}
C∞B∗(Ω) = {v ∈ C∞(Ω) | B∗v|∂Ω = 0}

We say that B∗v|∂Ω = 0 is the adjoint boundary condition for Bu|∂Ω = 0 if the two following
conditions hold: (i) (u, L∗v) = (f, v) for all v ∈ C∞B∗(Ω) implies u ∈ C∞B (Ω); (ii) (v, L∗u) = (g, u) for
all u ∈ C∞B (Ω) implies v ∈ C∞B∗(Ω)

As an example, consider Lu = ∆u = f with boundary condition Bu|∂Ω = u|∂Ω = 0. We claim
that in this case B∗v|∂Ω = v|∂Ω = 0. Indeed, suppose that condition (i) of the above definition holds.
Then

(f, v) = (u, L∗v) = (Lu, v) +

∫
∂Ω

(u∂νv − v∂νu) = (f, v) +

∫
∂Ω

(u∂νv − v∂νu)

where ∂ν is the normal derivative. Since u vanishes on the boundary we get
∫
∂Ω v∂νu for all v ∈

C∞B∗(Ω), then we must have B∗v|∂Ω = 0. Analogously we verify condition (ii).
The general idea for solving (∗) is the following. Look for an operator M such that we can solve

Mu = v, v ∈ C∞B∗(Ω)

in order to get a u ∈ C∞B (Ω) (in general, we can have more restrictions on u, such as Bu|∂Ω = 0 +
extra higher order conditions) such that (Mu,Lu) ≥ C ‖ u ‖2s. Then

‖ y ‖s‖ L∗v ‖−s≥ (u, L∗v) = (Lu, v) = (Mu,Lv) ≥‖ u ‖2s
Usually ‖ v ‖−s≤ C ‖ u ‖s as M is of order ≥ s. We obtain then ‖ v ‖−s≤ C ‖ L∗v ‖−s.

Now consider the linear functinal F : L∗C∞B∗(Ω) → R given by F (L∗v) = (f, v), f is in Hs(Ω)
or maybe even smooth, depending on the particular problem. Then F (L∗v) ≤‖ f ‖s‖ v ‖−s≤ C ‖
f ‖s‖ L∗v ‖−s, so F is bounded on the subspace L∗C∞B∗(Ω) ⊂ H−s(Ω). By Hahn-Banach it can be

extended to F̃ on all H−s(Ω). By Hs(Ω) = H−s(Ω)∗ we get that there exists a u ∈ Hs(Ω) such that

F̃ (w) = (u,w) for all w ∈ H−s(Ω). Restricting w bach to L∗C∞B∗(Ω) we have

(u, L∗v) = F̃ (L∗v) = F (L∗v) = (f, v)

for all C∞B∗(Ω). By definition of C∞B (Ω), assuming s large enough we can integrate by parts to force
u to solve Lu = f and also to satisfy Bu|∂Ω = 0.
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We want to do some examples now. But before that we need one more definition.

Definition 4.2. Define the double (s, r)-Sobolev norm as

‖ u ‖(s,r) =
∑

0≤α≤s, 0≤β≤r
α+β≤max(s,r)

∫
Ω

(∂αx ∂
β
y u)2

Then the (s, r)-Sobolev spaceH(s,r)(Ω) is the completion of C∞(Ω) w.r.t. the norm ‖ · ‖(s,r).

The above results concerning negative Sobolev norms, including the necessary and sufficient con-
dition for existence, generalize to the double Sobolev norms; see [3].

4.1. Elliptic equations. Consider Lu = ∆u − u = f in Ω{(x, y) ∈ R2 | |x| < 1, |y| < 1}. We
shall prove existence of regular solutions for the Dirichlet and Neumann problems. To determine the
correct BVP notice that

(u, L∗v)− (Lu, v) =

∫
∂Ω

(u∂Ωv − v∂Ωu)

so that we have Bu = u⇔ B∗v = v for Dirichlet BC and Bu = ∂νu⇔ B∗v = ∂νv for Neumann BC.
Let

Mu =
s∑

k=0

(−1)k∂2k
x u

and solve Mu = v, v ∈ C∞B∗(Ω), with

∂2k
x u|∂Ω±v

= 0, k = 0, 1, . . . , s− 1 for Dirichlet

∂2k+1
x u|∂Ω±v

= 0, k = 0, 1, . . . , s− 1 for Neumann

and

u|∂Ω±h
= 0, for Dirichlet

uy|∂Ω±h
= 0, for Neumann

where ∂Ω−h (∂Ω−h ) denotes the bottom (top) horizontal boundary and where ∂Ω−v (∂Ω−v ) denotes
the left (right) vertical boundary. Notice that this is possible since for an ODE of order 2s we
can prescribe 2s boundary conditions. Also on ∂Ω±h v = 0 or vy = 0, so we get u = 0 or uy = 0,
respectively. Furthermore, notice that (Mu,Lu) ≥ C ‖ u ‖2(s+1,1) for all u having the above boundary

conditions. To see that this is indeed the case, it is illustrative to look at the following example

(−uxxxx + uxx − u, uxx + uyy − u) =

∫
Ω

(u2
xxx + u2

xx + u2
x + u2 + u2

xxy + u2
xy + u2

y)

+

∫
∂Ω

(uuxxxν1 − uxuxxν1 − uuxν1 − uxxuxxx − uuxν1 − uyyuxxxν1 + uxyyuxxν1)

+

∫
∂Ω

(−uxxyuxxν2 + uyyuxν1 − uxyν2 − uyuν2) ≥‖ u ‖2(3,1)

since all boundary terms vanish (νj is the normal in the j-direction).
Now observe that if we set

‖ v ‖(−s,−r)= sup
w∈H(s,r)(Ω)

|(w, v)|
‖ w ‖(s,r)
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and H(−s,−r)(Ω) =completion of L2(Ω) w.r.t. the norm ‖ · ‖(−s,−r) in the usual way, then

‖ v ‖(−s,0)≤ sup
w∈H(s,0)(Ω)

|(w, u)(s,0)|
‖ w ‖(s,0)

≤‖ u ‖(s,0)

As an illustration of how to get this inequality, consider

−(w, v) = (w,−uxxxx + uxx − u) = (w, u)(2,0) +

∫
∂Ω

(wuxxxν1 − wxuxxν1 − wuxν1)

= (w, u)(2,0)

since we can assume that w|∂Ω± = 0, i.e.,

H(3,1)(Ω) = completion of C∞(Ω) in the norm ‖ · ‖(3,1)=

= completion of C∞(Ω) ∩ {w | w|∂Ω±v
= 0} in the norm ‖ · ‖(3,1)

Therefore |(w, v)| ≤‖ w ‖(2,0)‖ u ‖(2,0), which is the desired inequality in this particular case.
Continuing the computations, now we have

‖ u ‖(s+1,1)‖ L∗v ‖(−s−1,−1)≥ (u, L∗v) = (Lu, v) = (Mu,Lu) ≥‖ u ‖2(s+1,1)

for all v ∈ C∞B∗(Ω). Hence

‖ v ‖(−s,0)≤‖ u ‖(s+1,1)≤‖ L∗v ‖(−s−1,−1)

for all v ∈ C∞B∗(Ω). Summarizing the above, we have the following result

Theorem 4.3. For each f ∈ H(s,0)(Ω) there exists a weak solution u ∈ H(s+1,1)(Ω) of Lu = f , i.e,
(u, L∗v) = (f, v) for all v ∈ C∞B∗(Ω).

In order to obtain higher regularity in the y-direction we need the following lemma concerning
difference quotients, which are defined as

uh(x, y) =
u(x, y + h)− u(x, y)

h

Lemma 4.4. (i) If Ω′ ⊂⊂ Ω and u ∈ H(0,1)(Ω) then

‖ uh ‖L2(Ω′)≤‖ uy ‖L2(Ω)

(ii) If u ∈ L2(Ω′) and ‖ uh ‖L2(Ω′)≤ C for all 0 < |h| < dist(Ω′, ∂Ω) then u ∈ H(0,1)(Ω′) with
‖ uy ‖L2(Ω′)≤ C.

Proof. Assume first that u is smooth. Then for 0 < |h| < 1
2 dist(Ω′, ∂Ω) we have

u(x, y + h)− u(x, y) = h

∫ 1

0
uy(x, y + th)dt

So

|u(x, y + h)− u(x, y)| ≤ h
∫ 1

0
|uy(x, y + th)|dt
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Hence, by Jensen’s inequality∫
Ω′
|uh|2 ≤

∫
Ω′

(

∫ 1

0
|uy(x, y + th)|dt)2dxdy

≤
∫ 1

0
(

∫
Ω′
|uy(x, y + th)|2dxdy)dt

≤
∫

Ω′
|uy(x, y + t0h)|2dxdy for t0 where the integrand achieves its maximum

≤ uy ‖L2(Ω)

Now, by approximation this holds for u ∈ H(0,1)(Ω).
Assume now the hypothesis of (ii). For all φ ∈ C∞c (Ω′) we have∫

Ω′
u(x, y)

φ(x, y + h)− φ(x, y)

h
dxdy = −

∫
Ω′
φ(x, y)

u(x, y)− u(x, y − h)

h
dxdy

where we used integration by parts for difference quotients and a change of variables y′ = y + h. In
other words, we have ∫

Ω′
uφh = −

∫
Ω′
u−hφ

By assumption suph ‖ u−h ‖L2(Ω′)≤ C. Using the weakly compactness of bounded sets in Hilbert

spaces we get a hk converging to zero and a w ∈ L2(Ω′) such that u−hk converges in L2(Ω′) to w.
But then ∫

Ω′
uφy =

∫
Ω
uφy = lim

hk→0

∫
Ω
uφhk

= − lim
hk→0

∫
Ω′
u−hkφ = −

∫
Ω′
φ = −

∫
Ω
wφ

�

We can now obtain full regularity for any solution in the previous theorem.

Corollary 4.5. For each f ∈ Hs(Ω) there exists a unique solution u ∈ Hs+1(Ω) of Lu = f .

Proof. We know that u ∈ H(s+1,1)(Ω) and for all v ∈ C∞B∗(Ω) we have

−(uy, vy) = (f − uxx + u, v) = (f̄ , v)

where f̄ = f − uxx + u ∈ H(0, 1)(Ω). Then −(uhy , vy) = (f̄h, v), and if we choose smooth functions

{vi} ⊂ C∞B∗ such that vi → uh in H(0,1)(Ω) we get

‖ uhy ‖2≤ |(f̄h, uh)| ≤‖ f̄h ‖‖ uh ‖≤‖ f̄y
h ‖‖ uh ‖≤ C

by (i) of the lemma; and by (ii) we have uy ∈ H(0,1)(Ω), i.e., uyy ∈ L2(Ω). The following then holds
in L2(Ω)

uyy = f − uxx − u ∈ H(s−2,1)(Ω)

We can then differentiate w.r.t. y to get

uyyy = (f − uxx − u)y ∈ H(s−3,1)(Ω)

and continue to boot strap to get u ∈ Hs+1(Ω).
Uniqueness follows since now u ∈ Cs−1(Ω) and (−u, Lu) ≥‖ u ‖21 holds as v ∈ C∞B∗(Ω) implies that

u|∂Ω = 0 or ∂νu|∂Ω = 0. �
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Remark 4.6. One draw back of this method is that it does not give the best result, i.e., the best is
f ∈ Ck,α(Ω) implying u ∈ Ck+2,α(Ω), or f ∈ Hs(Ω) implying u ∈ Hs+2(Ω).

4.2. Hyperbolic equations. Here we consider the Cauchy problem for the wave equation

Lu = utt − uxx + u = f

u(x, 0) = ut(x, 0) = 0, u(±1, t) = 0 or ux(±1, t) = 0

and its adjoint boundary value problem

L∗v = vtt − vxx + v = g

v(x, 1) = vt(x, 1) = 0, v(±1, t) = 0 or vx(±1, t) = 0

The wave equation represents the motion of a string (or waves) with fixed ends (for the Dirichlet
boundary conditions) under the influence of an external force f . If we tried the full Dirichlet or
Neumann problem as for the Laplace equation we would not be able to prove existence using this
method.

Let

Mu = a(t)
s∑

k=0

(−1)k∂2k
x ut

where a(t) = −e−t (we really only need a′(t) > 0, a(t) < 0) and solve

Mu = v, v ∈ C∞B∗(Ω) with u(x, 0) = ut(x, 0) = 0

∂2k
x u(±1, t) = 0, k = 0, 1, . . . , s− 1 fot Dirichlet

∂2k+1
x u(±1, t) = 0, k = 0, 1, . . . , s− 1 fot Neumann

Notice that this can be done using standard theory for ODEs. Then observe that

(Mu,Lu) ≥‖ u ‖2(s+1,1)

for all u ∈ C∞B (Ω) = {u having the above boundary conditions }. For example:

( utt − uxx + u , a(t)(−utxxxx + utxx − ut) ) =∫
Ω

a′(t)

2

(
u2
xxx + u2

xxt + u2
xt + 2u2

xx + u2
t + 2u2

x + u2
)

+∫
∂Ω

(
auxutν1 −

a

2
u2
t ν2 −

a

2
u2
xν2 −

a

2
u2ν2 −

a

2
u2
xxν2 + auttuxtν1 −

a

2
u2
xtν2+

auuxtν1 −
a

2
u2
xν2 − auttutxxxν1 + auxttutxxν1 −

a

2
u2
xxtν2+

auxxutxxxν1 − au2
xxxν2 − auuxxxtν1 + auxuxxtν1 − au2

xxν2

)
≥ C ‖ u ‖2(3,1)

since all boundary terms vanish or are non-negative for u ∈ C∞B (Ω). Furthermore, as in the elliptic
case

‖ v ‖(−s,0)≤ C sup
w∈H(s,0)(Ω)

|(w, ut)|
‖ w ‖(s,0)

≤ C ‖ u ‖(s,1)
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For example

−(w, v) = −( w , a(t)(−utxxxx + utxx − ut) ) = (w, a(t)ut)(2,0)

+

∫
∂Ω

(awutxxxν1 − awxutxxν1 − awutxν1) = (w, a(t)ut)(2,0)

since we can assume that w(±1, t) = 0 as before, so |(w, v)| ≤ C ‖ w ‖(2,0)‖ u ‖(2,1) which gives the
desired result.

We now have

‖ u ‖(s+1,1)‖ L∗v ‖(−s−1,−1)≥ (u, L∗v) = (Lu, v) = (Mu,Lu) ≥ C ‖ u ‖2(s+1,1) for all v ∈ C∞B∗(Ω)

((u, L∗v) = (Lu, v) is justified because all boundary terms vanish). Hence

‖ v ‖(−s,0)≤ C ‖ u ‖(s+1,1)≤ C ‖ L∗v ‖(−s−1,−1)

This proves

Theorem 4.7. For each f ∈ H(s,0)(Ω) there exists a weak solution u ∈ H(s+1,1)(Ω) of Lu = f , i.e.,
(u, L∗v) = (f, v) for all v ∈ C∞B∗(Ω).

Remark 4.8. Higher regularity may be proven in the same way as for the elliptic case. Then u
solves Lu = f pointwise and because v ∈ C∞B∗(Ω) we have that u ∈ C∞B (Ω) has the correct boundary
values. Again this method does not necessarily gives the best result.

Exercise: Prove the same result for the parabolic heat equation

Lu = ut − uxx + u = f

u(x, 0), u(±1, t) = 0 or ux(±1, t) = 0

with adjoint boundary value problem

L∗v = vt − vxx + v = g

v(x, 1), v(±1, t) = 0 or vx(±1, t) = 0
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