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Abstract
In this talk we'll derive explicit relations between the (d + 1)-bulk

theory and the d-dimensional QFT. This will be the "AdS-CFT pre-
scription at work".

1 Introduction
Broadly speaking, holography states that a (d+1)-dimensional gravitational
theory � referred as the bulk theory (whose quantities are therefore called
bulk quantities, e.g., bulk metric etc) should have a description in terms
of a d-dimensional quantum �eld theory � referred as the dual theory.
AdS-CFT provides a realization of this idea [1].

In this talk we'll derive explicit relations between the (d + 1)-bulk theory
and the d-dimensional QFT. This will be the "AdS-CFT prescription at
work".

Before starting, however, a word of caution: we'll be working on a (d+1)-
dimensional conformally compact Einstein manifold X; the dual QFT "lives"
on the boundary ∂X of X. This QFT needs not to be a quantum conformal
�eld theory (in fact, the example we'll present is not a CFT since it has a
conformal anomaly), neither is X necessarily an AdS space. However, the
"holographic principle":

∗www.math.sunysb.edu/∼disconzi

1



gravity on X ↔ QFT on ∂X

is sometimes also called AdS-CFT correspondence and we might use this
jargon as well (although we'll use "holographic principle/correspondence"
etc when we want to stress that we don't have a CFT).

2 Correlation functions
Recall that correlation functions (c.f.) are the main objects of interest in
QFT since observable quantities can be expressed in terms of them. These
are de�ned as expectation values of time ordered products of operators:

〈Ô(x1) · · · Ô(xn)〉 (1)

and can be expressed in terms of path integrals

〈Ô(x1) · · · Ô(xn)〉 =

∫ O(x1) · · · O(xn)eiSDO∫
eiSDO (2)

(Ô=quantum �eld =operator; O=classical �eld=function, spinor etc).
Correlation functions can be computed by functionally di�erentiating a

generating functional Z[J ] and setting the source J equal to zero:

Z[J ] =
eiS+i

R OJDO∫
eiSDO (3)

〈Ô(x1) · · · Ô(xn)〉 =
1

i

δ

δJ(x1)
· · · 1

i

δ

δJ(xn)
Z[J ]

∣∣∣
J=0

(4)

where the integral
∫ OJ is over spacetime.

Recall that in general the c.f. diverge and need to be renormalized. Recall,
also, that most of the time we are interested in connected Feynman graphs
and therefore we want to consider the generating functional

W [J ] = −i log Z[J ] (5)

instead of Z[J ]. In this case we obtain connected c.f. 〈Ô(x1) · · · Ô(xn)〉connected
by functionally di�erentiating W [J ]. Since in the end of the day we'll use
W [J ] rather than Z[J ], we'll drop the subscript "connected" and write simply
〈Ô(x1) · · · Ô(xn)〉.
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3 Witten's prescription
Witten [3] gave a precise formulation of the correspondence initially conjec-
tured by Maldacena [5]. First we recall some de�nitions:

A metric g̊ on the interior of Xd+1 of a compact manifold with boundary
X

d+1 is said to be conformally compact if ḡ = r2g̊ extends continuously
(or with some degree of smoothness) as a metric to X, where r is a de�ning
function for ∂X, i.e., r > 0 on X and r = 0, dr 6= 0 on ∂X.

Because of the possible choices for r only the conformal class [ḡ
∣∣
∂X

] of ḡ
∣∣
∂X

is determined by the original data. (∂X, [ḡ
∣∣
∂X

]) is called conformal in�nity of
(X, g̊); as abuse of language, sometimes ∂X is called the conformal in�nity.
If (X, g̊) is Einstein then we say that we have a conformally compact
Einstein manifold (c.c.E.m). See [4] for more details.

From now on we'll always be working with a c.c.E.m. (Xd+1, g̊). We'll
also assume throughout these notes that the cosmological constant in the
Hilbert-Einstein action is negative and we'll, as usually, write the cosmolog-
ical constant as Λ = −d(d−1)

2l2
, with l2 = 1 (see below).

In order to state Witten's prescription we'll denote by φ general �elds on
X (in the example we'll work out later the �eld is the metric). Let ZS(φ0)
be the supergravity partition function (or string; ZS(φ0) is always a parti-
tion function of a gravitational theory) on X computed with the boundary
condition that at in�nity φ approaches a given �eld φ0.

The holographic principle/AdS-CFT correspondence states that for every
bulk �eld φ there exists a corresponding gauge invariant operator Ôφ on ∂X1

(recall that "bulk" refers to quantities on X, so "bulk �eld" simply means a
�eld on X); it also states that φ0 couples to Oφ:

∫ Oφφ0 (and therefore φ0

acts as a source for Oφ, see below). In this situation Witten's prescription
is:

ZS(φ0) = 〈e−
R

∂X φ0Oφ〉QFT (6)

which, unwrapping the de�nitions, reads:
∫

φ∼φ0

e−Sgr(φ)Dφ =

∫
e−S(Oφ)e−

R
∂X φ0OφDOφ∫

e−S(Oφ)DOφ

(7)

1The subscript φ on Ôφ is simply to remind us that this is the operator corresponding,
via the holographic principle, to the bulk �eld φ; it doesn't mean that Ôφ depends on φ.
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where
∫

φ∼φ0
e−Sgr(φ)Dφ means the path integral over �elds on X which ap-

proach φ0 at in�nity, Sgr(φ) is the classical action for the gravitational theory
(supergravity, strings etc) on X and S(Oφ) is the classical action for the QFT
on ∂X. As the reader probably noticed, all the quantities are Wick rotated.

Notice that the right hand side of (6) (or equivalently (7) ) is exactly
the generating functional for c.f. of Oφ, with φ0 as source (compare with (3)
where φ0 plays the role of J). Hence, functionally di�erentiating 〈e−

R
∂X φ0Oφ〉QFT

with respect to φ0 (which is how we compute c.f.) is equivalent to function-
ally di�erentiating ZS(φ0) w.r.t. φ0. Here is the "magic" of the holographic
principle: the c.f. of the QFT on ∂X can be obtained from the partition
function of the gravitational theory on X. And this is more than just a
clever computational trick: since a QFT is completely determined by its c.f.,
the QFT on ∂X is completely determined by the (in principle, completely
di�erent) gravitational theory in X.

We'll assume from now on that this correspondence is true (remember
that the holographic principle/AdS-CFT correspondence is a conjecture, al-
though there are compelling arguments in its favor). Following the jargon,
we'll talk about the "gravitational side" and the "QFT side" or yet the "CFT
side" of the correspondence.

In a lot of situations we are interested in the low energy limit on the
gravitational side. More precisely, we suppose a regime where on the bulk
side the following holds: (i) geometry is a good description, i.e., large radius
approximation (by radius we mean the parameter l which appears in the
metric, we'll be working in units such that l = 1 throughout these notes)
and (ii) quantum e�ects are negligible (so that we have a good saddle point
approximation). These are correlated on the QFT side with (i) large 't
Hooft coupling (strongly coupled gauge theory only) and (ii) large N , where
N comes from the gauge group SU(N) � see [3, 5] for a more detailed
discussion.

In this situation we can compute ZS(φ0) by a saddle point approximation;
as usual only the classical contribution survives:

ZS(φ0)
∣∣∣
low energy

= e−Sos(φ0) (8)

where Sos(φ0) is the on-shell classical action, i.e., it is the action Sgr evaluated
at the solution φ of the Euler-Lagrange equations with boundary condition
φ = φ0 at in�nity.
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Of course, there are various issues here: we mention "the" solution, but
we might not have uniqueness and in that case we have to sum over the so-
lutions φ which satisfy the given boundary condition. Also, the action itself
might diverge, i.e., Sos(φ0) = ±∞ and in that case some sort of renormaliza-
tion needs to be implemented (this will actually be the case in the example
we'll develop later). Finally, it might be that the low energy limit on the
gravitational side is not a good approximation. In that case quantum correc-
tions need to be added. We'll not deal with this situation here, see [3] and
[5] for details.

It is important to stress, however, that a low energy limit on the gravi-
tational side does not mean a low energy limit on the QFT side.

Putting together formulas (7) and (8) we get:

e−Sos(φ0) = ZQFT [φ0] (9)

where, as we pointed out before, ZQFT [φ0]=right hand side of (7) is the
generating functional of c.f. on the QFT side. Taking log:

Sos(φ0) = − log ZQFT [φ0] = −WQFT [φ0] (10)

where WQFT [φ0] is the generating functional for connected diagrams.
As said before, the c.f. are computed by di�erentiating WQFT [φ0] w.r.t.

φ0. From (10) we can then compute the c.f. by di�erentiating the on-shell
action:

〈Ô(x)〉 =
δ

δφ0(x)
Sos(φ0)

∣∣∣
φ0=0

(11)

〈Ô(x1) · · · Ô(xn)〉 = (−1)n+1 δ

δφ0(x1)
· · · δ

δφ0(xn)
Sos(φ0)

∣∣∣
φ0=0

(12)

(the factor (−1)n+1 appears instead of a power of i because the quantities
are Wick rotated).

4 Fe�erman-Graham expansion and volume renor-
malization

The reference for this section is [4]. The tools presented here will be useful
to compute the on-shell action.
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Let (Xd+1, g̊) be a c.c.E.m, we denote ḡ = r2g̊. It's always possible to
choose r such that |dr|2ḡ = 1 (indeed, start with any de�ning function r0:
ḡ0 = r2

0g̊, conformally change the metric ḡ = e2ωḡ0, compute |dr|2ḡ and set it
equal to one, this gives a non-characteristic �rst order PDE for ω which can
therefore be solved).

Denote ∂X = M . A de�ning function determines for some ε > 0 an
identi�cation of M×[0, ε) with a neighborhood of M in X: (p, λ) ∈ M×[0, ε)
corresponds to the point obtained by following the integral curve of ∇ḡr
emanating from p for λ units of time. For r such that |dr|2ḡ = 1, the λ
coordinate is just r and ∇ḡr is orthogonal to the slices M × {λ}. Hence,
identifying λ with r on M × [0, ε) the metric ḡ takes the form

ḡ = dr2 + gr (13)

where gr is a 1-parameter family of metrics on M . Then

g̊ =
1

r2
(dr2 + gr) (14)

Recall that g̊ satis�es Einstein equations: Ric(̊g) + d · g̊ = 0 (d=dimension
of M). Decomposing the tensor Ric(̊g) + d · g̊ into components w.r.t. the
product structure M × [0, ε) gives that the vanishing of the component with
both indices in M is given by

rg′′ij + (1− d)g′ij − gijg
klg′kl − rgklg′ikg

′
jl +

r

2
gklg′klg

′
ij − 2rRij = 0 (15)

where gij are the components of gr on M , ′ denotes ∂r and Rij is the Ricci
tensor for gr with r �xed. The above equation can be written in an index-free
fashion as

rg′′r + (1− d)g′r − 2Kgr − 2r Ric(gr) + rKg′r + r(g′r)
2 = 0 (16)

where K is the mean curvature.
We want to expand gr near the boundary:

gr = g(0) + rg(1) + r2g(2) + . . . (17)

The coe�cients of this expansion can be calculated by di�erentiating
(ν − 1) times expression (15) w.r.t. r and setting r = 0:

(ν − d)∂ν
r gij|r=0 − gkl(∂ν

r gkl)gij|r=0 = (terms involving ∂µ
r gij, µ < ν) (18)
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The odd coe�cients of order less than d all vanish, and equation (18) also
completely determines ∂ν

r gij|r=0 as long as ν < d. When ν = d we have
that if d is odd the right hand side of (18) vanishes by parity considerations
and then gkl(∂d

r gkl)gij|r=0 = 0, so the trace free part of ∂dgkl can be chosen
arbitrarily. If d is even, the right hand side of 18 might have non-vanishing
trace free part, forcing the inclusion of a rd log r term in order to make the
expansion consistent � the term rd log r has a trace-free coe�cient. The
trace of the rd coe�cient is determined but not its trace-free part.

Summarizing:
d even:

gr = g(0) + g(2)r
2 + (even powers) + hrd log r + g(d)r

d + . . . (19)

where the g(j) are locally formally determined for 0 < j ≤ d− 2, h is locally
formally determined and trace-free and the trace of g(d) is locally determined.
g(0) and the trace-free part of g(d) are formally undetermined.

d odd:

gr = g(0) + g(2)r
2 + (even powers) + g(d−1)r

d−1 + g(d)r
d + . . . (20)

where the g(j) are locally formally determined for 0 < j ≤ d− 1, g(0) and the
trace-free part of g(d) are formally undetermined but g(d) is trace-free.

Of course, there are convergence issues etc. We are treating the series
purely formally.

So, to calculate the coe�cients we have to carry out the above di�erenti-
ations and keep track of the terms. For example, for d = 2:

h = 0 (21)

gij
(0)g(2)ij = −1

2
R (22)

Notice that g(0) corresponds to a representative of the conformal in�nity of
(X, g̊). In particular, when we are solving Einstein's equations with condition
g = g̃ at in�nity we have g(0) = g̃.

We notice for further use that
( det gr

det g(0)

) 1
2

= 1 + v(2)r
2 + (even powers) + v(d)r

d + . . . (23)

where all v(j)'s are locally determined functions on M .
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5 Holographic renormalization and correlation
functions

The main reference here is [1].
Conformally compact Einstein manifolds can be thought of as asymp-

totically AdS in the following sense. The curvature of (Xd+1, g̊) near the
conformal in�nity (i.e., near the boundary) takes the form2:

Rijkl(̊g) = |dr|2ḡ (̊gikg̊lj − g̊kj g̊li) + O(r−3) (24)
For |dr|2ḡ = 1

Rijkl(̊g) = g̊ikg̊lj − g̊kj g̊li + O(r−3) (25)
Notice that g̊ikg̊lj−g̊kj g̊li is of order O(r−4), so it dominates near the boundary
and g̊ikg̊lj − g̊kj g̊li is exactly the expression for the curvature of AdS spaces.
Hence we might de�ne an asymptotically AdS space as a c.c.E.m. [2].

We want to use formulas (10) and (12) with the bulk �eld being the
metric. In this case Sgr(φ) = Sgr (̊g) is the Hilbert-Einstein action (as always,
we imagine that some boundary condition g̊ = g(0) is prescribed at in�nity):

Sos(g(0)) =

∫

X

(R + 2Λ) +

∫

∂X

2K (26)

Of course, (26) is ill-de�ned: Einstein's equation imply that R is constant,
hence

∫
X

is proportional to the volume of X, which is in�nity. Also, there
is the question of what exactly the term

∫
∂X

is supposed to mean with the
boundary at in�nity.

From the point of view of (10) and (12), this might not be a surprise since
the c.f. obtained from WQFT are known to diverge.

Hence, we need to apply some renormalization procedure to render Sos(g(0))
�nite. After doing so we can then apply the AdS-CFT prescription to com-
pute correlation functions. The point to be stressed here is that by carrying
out the suitable renormalization on the gravitational side equations (10) and
(12) will automatically yield renormalized c.f.

First, it's going to be more convenient to rewrite (14) in coordinates
ρ = r2; in this case:

g̊ =
1

r2
(dr2 + gr) =

dρ2

4ρ2
+

1

ρ
gρ (27)

2We use the convention of [2]: R l
ijk = ∂iΓl

jk + Γl
imΓm

jk − µ ↔ ν, Rij = R k
ikj .
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Then (20) becomes:

gρ = g(0) + ρg(2) + · · ·+ ρd/2g(d) + hρd/2 log ρ + . . . (28)

(we'll write everything for d even, similar formulas hold for d odd). And (23)
becomes

( det gρ

det g(0)

) 1
2

= 1 + v(2)ρ + · · ·+ v(d)ρ
d/2 + . . . (29)

(recall that the coe�cients v(j) are known, i.e., they are locally determined
functions on M).

We start by regularizing the on-shell Hilbert-Einstein action, i.e., we intro-
duce a cuto� which prevents us from integrating all way up to the boundary:

Sos,reg(g(0)) =

∫

ρ≥ε

(R(̊g) + 2Λ)
√

g̊dxdρ−
∫

ρ=ε

2K
√

γdxdρ (30)

where γ is the metric induced on {ρ = ε} (and K = K(γ)) (the minus sign
comes from the fact that the boundary corresponds to ρ = ε =lower limit of
integration). Notice that from g̊ = dρ2

4ρ2 + 1
ρ
gρ we have that γ = 1

ρ
gρ.

Since g̊ satis�es Einstein's equations we get R = 2Λ(d+1)
1−d

(recall that
dimX = d + 1) and using Λ = −d(d−1)

2
we get R + 2Λ = 2d. Using also

det g̊ =
1

4ρ2
det(

1

ρ
gρ) =

1

4ρ2

1

ρd
det(gρ) (31)

we get
∫

ρ≥ε

=

∫

ρ=ε

( ∫

ε

d

ρ
d
2
+1

√
det gρdρ

)
dx (32)

(here
∫

ε
means

∫ C

ε
, where C is some appropriate constant).

For the boundary integral, we use that γ = 1
ρ
gρ, kij = 1

2
∂rγij = 1

2

∂γij

∂ρ
∂ρ
∂r

=√
ρ∂ρ(

1
ρ
gij(x, ρ)) and γij = ρgij(x, ρ) to obtain the following expression for

the integral of K = γijkij:

−
∫

ρ=ε

=

∫

ρ=ε

1

ρd/2

(
− 2d

√
det gρ + 4ρ∂ρ

√
det gρ

)∣∣∣
ρ=ε

dx (33)
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where we also have used the standard formulas for derivative of the determi-
nant:

1

det M

d

dt
detM = tr

(dM

dt
M−1

)
(34)

δ
√

det g =
1

2

√
det ggijδgij (35)

which in our case allows us to express gij(x, ρ)∂ρgij(x, ρ) in terms of ∂ρ

√
det gρ:

∂ρ

√
det gρ =

1

2

√
det ggij∂ρgij (36)

Putting all together

Son,reg(g(0)) =

∫ [ ∫

ε

d

ρ
d
2
+1

√
det gρdρ +

1

ρd/2

(
− 2d

√
det gρ + 4ρ∂ρ

√
det gρ

)∣∣∣
ρ=ε

]
dx

(37)
Using now (29) we �nd that the divergences appear as 1

εk poles plus a loga-
rithmic divergence:

Son,reg(g(0)) =

∫ √
det g(0)

(
a(0)ε

− d
2 + a(2)ε

− d
2
+1 + · · ·+ a(d−2)ε

−1 + a(d) log ε
)
dx + O(ε0)

(38)
The a(j)'s come from the v(j)'s and hence are known quantities. Now we
renormalize the action by subtracting the divergent terms and removing the
cuto�:

Son,ren(g(0)) =

lim
ε→0

[
Son,reg(g(0))−

∫ √
det g(0)

(
a(0)ε

− d
2 + a(2)ε

− d
2
+1 + · · ·+ a(d−2)ε

−1 + a(d) log ε
)
dx

]

(39)
It seems that now we would be in a condition to use formulas (10) and (12)
to compute c.f. on the QFT side. There is, however, a technical issue.
We changed the on-shell action via the renormalization procedure. It's not
obvious that (12) should hold with Son,ren(g(0)) in place of Son(g(0)). In fact,
it won't. For the 1-point function, which is the case we'll be interested here,
(12) needs to be modi�ed to

〈Ôij(x)〉 =
2√

det g(0)(x)

δSos,ren(g(0))

δgij
(0)(x)

∣∣∣
g(0)=0

(40)
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see [2] for more details.
We can ask which operator Ô is the dual of the bulk �eld g̊. Recall that

according the the holographic principle Ô is the quantum �eld corresponding
to the classical �eld O which couples to g(0) in the classical action � which
turns out to be the stress energy tensor (notice that this is the stress-energy
tensor of the dual theory, it's not the bulk stress energy tensor).

Hence

〈T̂ij(x)〉 =
2√

det g(0)(x)

δSos,ren(g(0))

δgij
(0)(x)

∣∣∣
g(0)=0

(41)

Using γ = 1
ρ
gρ the above equation can be expressed as

〈T̂ij(x)〉 =
2√

det g(0)(x)

δSos,ren(g(0))

δgij
(0)(x)

∣∣∣
g(0)=0

= lim
ε→0

2√
det g(x, ε)

δSos,ren(g(0))

δgij(x, ε)

= lim
ε→0

( 1

ε
d
2
−1

Tij(γ)
)

(42)

Where Tij(γ) is the stress-energy tensor of the theory at ρ = ε described by
the action (39) but before the limit is taken.

Tij(γ) has two contributions:

Tij(γ) = T reg
ij + T ct

ij (43)

where T reg
ij comes from the regularized action (30) and T ct

ij comes from the
counter-terms. T reg

ij can be computed from (37) by varying with respect to
the induced metric (notice however that T reg

ij = −Kij + Kγij); the answer is

T reg
ij = ∂εgij(x, ε)− gij(x, ε)gkl(x, ε)∂εgkl(x, ε) +

1− d

ε
gij(x, ε) (44)

The contribution T ct
ij has to be computed from

−
∫ √

det g(0)

(
a(0)ε

− d
2 + a(2)ε

− d
2
+1 + · · ·+ a(d−2)ε

−1 + a(d) log ε
)

(45)

First we need to rewrite all quantities in terms of the induced metric � this
is done by inverting the relation between γ and g(0) perturbatively in ε; then
we vary γ to get the stress-energy tensor and �nally write everything back in
terms of gij(x, ε). These computations and the general expressions derived
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from them can be found in [1]. In dimension two, however, the computations
are simpler and the formulas more friendly, and in this case the contribution
of the counter-terms is:

T ct
ij = −γij = −1

ε
gij(x, ρ) = −1

ε
(g(0)ij + εg(2)ij + . . . ) = −g(0)ij

ε
− g(2)ij + O(ε)

(46)

(we don't have a log divergence in dimension two; see the explicit expressions
in [1]).

We assume d = 2 from now on. In this case, using gij(x, ε) = g(0)ij +
εg(2)ij + . . . (recall that h = 0 in two dimensions) expression (44) becomes:

T reg
ij = 2g(2)ij − g(0)ijg

kl
(2)g(2)kl +

g(0)ij

ε
+ O(ε) (47)

Putting all these in (43) and using (42) we �nally obtain

〈T̂ij〉 = g(2)ij − g(0)ijg
kl
(2)g(2)kl (48)

Notice that the divergent terms cancel, as expected.
Therefore, we have successfully derived an expression for the one-point

function of the QFT on the boundary in terms of data coming from the bulk.
Recall that g(0) and g(2) are unknowns in the Fe�erman-Graham expansion.
Suppose, however, that we completely solved the bulk theory in such way
that g(0)ij and g(d)ij are known. Then formula (48) tells us how to �nd
the one-point function of the QFT on the boundary. Moreover, as pointed
out before, the one-point function given in (48) is a renormalized one-point
function � the renormalization usually applied to the c.f. was carried out
on the gravitational side. The procedure of obtaining renormalized QFT c.f.
from the renormalized gravitational on-shell action is called Holographic
renormalization.

From (48) we can also compute the conformal anomaly of the boundary
QFT; we �nd

trace of 〈T̂ij〉 = −R = − 3lR

48πGN

(49)

where in the last step we restored all constants omitted in the action. This
expression for the conformal anomaly was calculated on [6] using a di�erent
approach; we see that the holographic principle gave us the correct answer.
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It's interesting to noticing that we can use (48) the other way around:
given a metric g(0) on the boundary, can we reconstruct (at least locally)
the spacetime on the interior? From the Fe�erman-Graham expansion we
see that only g(0) is not enough, we need also g(2). But if we solved the
the boundary theory, then we have the one-point function and can use (48)
to �nd g(2) and then reconstruct the bulk metric (at least locally) from the
Fe�erman-Graham expansion (this is in fact the point of view of [1]).

Needless to say, the above reasoning illustrated with equation (48) applies
in general dimension.

Finally, it's important to stress that the ideas presented here are quite
general and can be applied to other �elds than the metric; see [2].
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