
Elementary realization of BRST symmetry
and gauge fixing

Martin Rocek,
notes by Marcelo Disconzi

Abstract

This are notes from a talk given at Stony Brook University by
Professor PhD Martin Rocek. I tried to write down as many details of
the lecture as I could, although I may have missed some points (and
so I am the only responsible for any imprecision which may be found).

1 General idea
We are going to illustrate the idea of BRST symmetry and gauge fixing
with a very basic example using finite-dimensional integrals instead of path
integrals.

Consider the following integral
∫

dx e−S(r), where x ∈ R2 and r = |x| (1)

We are supposing that the action S depends on r only, i.e, it is rotationally
invariant. Therefore the action is invariant under the action of SO(2), what
can be expressed infinitesimally as

δS = 0 (2)

for

δr = 0, δθ = ε (3)

So states which are related to one another by a rotation are physically equiv-
alent — and in this simplified example states are (labeled by) just points in
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the plane —, and therefore if we want to integrate over all (non-equivalent)
physical states we should integrate only over points which are in different
orbits. In this case the orbit of each point under the SO(2) action is simply
a circle. In other words, if we write the integral in polar coordinates

∫ ∞

0

∫ 2

0

πr dr dθ e−S(r) = 2π

∫ ∞

0

rdre−S(r) (4)

we have that for each fixed r the integral over θ — which gives the factor 2π
— is over-counting states. Therefore if want to get rid of this over-counting
we need to drop the factor 2π. Stated in other terms, the integral over
physical states is an integral on the quotient space or space of orbits. In the
above example this can be written in terms of the original integral simply
dividing by 2π:

I =

∫ ∞

0

r dr e−S(r) (5)

=
1

2π

∫
dx e−S(r) (6)

Notice that the factor 2π that we need to divide by is exactly the volume
of the symmetry group, and here lies the problem: in general the group of
gauge transformations has infinite volume so this procedure does not work
(of course, in this example we could guess that the desired integral is given by
(5), but in general we start with some complicated path integral and we want
to pass to an integral on the quotient, but we do not know how this integral
on the quotient looks like and, as said, we can not obtain it by dividing by
the volume of the group) . Therefore let us try to rewrite (5) in terms of (1)
in a way which does not require division by the volume of the group.

We start by choosing a point in each orbit; this corresponds to choose
a representative for each orbit. This can be accomplished by specifying a
function f(r, θ) = 0 which crosses each orbit transversally and only once;
specifying f is a gauge-fixing. Now notice that I can be written as

I =

∫
dxe−S(r)δ(f(r, θ))

∂f

∂θ
(7)

Indeed ∫
dx e−S(r)δ(f(r, θ))

∂f

∂θ
=

∫
r dr dθ e−S(r)δ(f(r, θ))

∂f

∂θ

=

∫
r dr df e−S(r)δ(f) =

∫
r dr e−S(r) = I (8)
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(the term ∂f
∂θ

corresponds to what in the QFT setting is the Faddeev-Popov
determinant) An example for f is f(r, θ) = θ. Since I is independent of f
we can average over f ’s. In order to do this we use a Gaussian distribution:

1√
2πα

∫ ∞

−∞
dy e−

1
2α

y2

= 1 (9)

So we can write

I =
1√
2πα

∫
dx

∫
dy e−S(r)δ(f(r, θ)− y)e−

1
2α

y2 ∂f

∂θ
(10)

The term δ(f(r, θ)−y) occurs because we set f(r, θ) = y instead of f(r, θ) = 0
since we want to average over f ’s (obviously there is no lost of generality in
doing this). Performing the integral in y:

I =
1√
2πα

∫
dx e−S(r)− 1

2α
(f(r,θ))2 ∂f

∂θ
(11)

Our goal is to write everything as an argument of the exponential (so that
the inegrand looks like e−action), so we need to get rid of ∂f

∂θ
. To do this

we introduce anti-commuting or Grassman variables b, c, i.e., we consider
supermanifolds. Recall the Berezian

∫
dc c = 1,

∫
dc = 0 (12)

(analogous for b). Then

e−b ∂f
∂θ

c = 1− b
∂f

∂θ
c (13)

since all higher order terms in the expansion of the exponential vanish because
of the non-commutativity (c2 = b2 = 0). Then

∂f

∂θ
=

∫
db dc e−b ∂f

∂θ
c (14)

Hence

I =
1√
2πα

∫
dx db dc e−S(r)− 1

2α
(f(r,θ))2−b ∂f

∂θ
c (15)
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It is convenient to introduce another variable (now it is a standard coordinate,
not Grassman variables). We can rewrite I as

I =
1√
2πα

∫
dx db dc dB e−S(r)−α

2
B2+iBf(r,θ)−b ∂f

∂θ
c (16)

To see that (16) is equivalent to (15), on (16) complete the square of B and
perform the B integral.

Notice that with all this manipulations we did not change the value of
I. Therefore we succeeded in writing the integral over physical states as
integral of e−action without dividing by the volume of the group (the factor
1
2π

appearing here comes from the Gaussian integral we introduced and has
nothing to do with the volume of the group). But now we have an integral
on R3|2 (= x,B|b, c) instead of R2 (=only x).

Some terminology: b and c are called ghosts ; more precisely c is a ghost
and b an anti-ghost ; B is called auxiliary field. We define a grading on the
variables saying that b has degree −1, the physical variables (i.e, x) and B
have degree zero and c has degree 1 (the reason for this grading is going
to become clear in a moment). The degree of this grading is called ghost
number, denoted gh. Notice that gh(AB) = gh(A) + gh(B)

Before introducing the BRST symmetry, let us make an important re-
mark. Due to the rotational invariance of S(r), the critical points of S are
degenerated, so we can not apply perturbation theory around its critical
points. Now the argument of the exponential on (16) has non-degenerated
critical points, so perturbation theory applies. This is another reason for con-
sidering the original integral written as in (16) (and is one of the motivations
for the BV formalism).

Now consider the following transformation, called BRST transformation

Qr = 0, Qθ = c, Qc = 0 (17)
Qb = iB, QB = 0 (18)

It easily follows that Q2 = 0, so Q is a degree one derivation of the variables,
where the grading was defined above. The definition of the BRST transfor-
mation is not arbitrary as it may look at first glance. Here is the prescription:
starting with the infinitesimal symmetry replace the parameters of the trans-
formation by anti-commuting variables. In our case, the symmetry is given
by (3) and the parameter is ε, so ε is replaced by c. The transformations
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Qb = iB, QB = 0 always hold independently of the group of transformations
we start with. Qc needs to be figured out in each specific example.

Since S depends on r only and Qr = 0 we have QS = 0. Notice also that

Q(
α

2
iBb +−bf) = −α

2
B2 + iBf − b

∂f

∂θ
c (19)

(we used Qf(r, θ) = c∂f
∂θ
). Then (16) can be rewritten as

I =
1√
2πα

∫
dµ e−S(r)+Qψ (20)

where dµ = dx db dc dB and ψ = −α
2
B2 + iBf − b∂f

∂θ
c. Since QS = 0 and

Q2 = 0 we see that the BRST transformation is a symmetry of the "new
action" S + Qψ.

Because we have a grading and a derivation we can consider the coho-
mology of this complex, called BRST cohomology. Notice that terms of the
form Qφ do not contribute to the integral. Recall that the physical variables
have zero degree; Qr = 0 tells us that the relevant physical variable (recall
that the integral over physical states does not depend on θ) is a cocycle.
Therefore the "observables" are given by the 0th-cohomology group (notice
that the other 0th degree variable is a coboundary: B = −iQb, so it does not
play any role in the cohomology).

Before moving to another example, let us remark that (7) is really every-
thing we need in order to compute the integral over physical states without
dividing by the volume of the group, but the remaining manipulations were
convenient in order to make the integral more doable.

As another example, consider now

I =

∫
dx e−S(x1) (21)

As in the case dr dθ, here we are integrating over two variables dx = dx1dx2

but the action depends only on one of them: S = S(x1). So S is invariant
under translations along the x2 direction and any two states related by such
a translation are physically equivalent. So an integral over different physical
states is given by

I =

∫ ∞

−∞
dx1 e−S(x1) (22)
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But here, differently from the previous example, we can not obtain (22) from
(21) by dividing by the volume of the group of symmetries, since the group
of translations along x2 is isomorphic to R and hence has infinite volume.
However, the prescription using the BRST transformation works since it
makes no reference to the volume of the group.

Following the prescription of BRST symmetry, first we write the infinites-
imal transformation for the x2-translation:

δx1 = 0, δx2 = λ (23)

So the BRST transformation is

Qx1 = 0, Qx2 = c, Qc = 0 (24)
Qb = iB, QB = 0 (25)

Then proceeding as before we get

I =
1√
2πα

∫
dµ e−S(x1)+Qψ (26)

1.1 Application to Gauge fields

Now we want to apply this idea to path integrals. We assume that every-
thing we did before carries over to this infinite dimensional setting. Consider
as example an Yang-Mills action. Then applying the above procedure the
integral over physical states reads

I =

∫
[DA]e−S(A)+Qψ (27)

More precisely, we have the following data: let M be the affine space of Lie
algebra valued 1-forms on a four-dimensional manifold (space-time) X, G the
gauge group (e.g. SU(2)) and G the group of gauge transformations. The
connections transform as

d + A 7→ g−1(d + A)g, g = g(x), x ∈ X,A ∈ M (28)

The action is

1

4λ
|F |2 +

θ

2π
F ∧ F (29)
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and the BRST symmetry

AQ = dc + [A, c], Qc =
1

2
[c, c] (30)

Qb = iB, Qb = 0 (31)

(here even though we have some isotropy we do not care about it since it is
finite dimensional and we are in an infinite dimensional setting). It turns out
that

ψ = i
ξ

2
Tr(bB) + Tr(b ? (d + A) ∧ ?A)− ξ

2
TrB2 + Tr(B ? (d + A) ∧ ?A)

+Tr(b ? (d + A) ∧ dc ? ∧(dc + [A, c])) (32)

SBV = S + Tr(A∗(dc + [A, c]) +
1

2
c∗[c, c]) (33)

where ξ is a parameter.

2 BV formalism
In order to introduce the BV formalism, let us consider the following example.
Suppose we have a rotationally invariant action in R3; the symmetry group
is SO(3). It is useful to keep in mind the very first example we developed,
of a rotationally invariant action on the plane. Recall also that the gauge
fixing is given by a function which select a representative in each orbit (the
orbits here are spheres centered at the origin). We can do this by choosing
a direction n on space and putting f(x) = n × x, x ∈ R3; × is the cross
product of vectors. So the gauge fixing condition is f(x) = 0, i.e.,

n× x = 0 (34)

This is the exact analogous of what we did on the plane: choosing the direc-
tion n corresponds to choose a line from the origin which crosses each sphere
(=each orbit) once1; in the two dimensional case we choose a line from the
origin which crossed each circle (there the orbits were circles) once by setting
f(r, θ) = θ = 0.

1Actually, n×x = 0 gives a line through the origin which crosses each sphere twice but
for doing perturbation theory this really does not matter
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Now write the infinitesimal symmetry as

δx = x× λ (35)

λ = (λ1, λ2, λ3) since the SO(3) has three parameters. Therefore we will
have three ghosts and three anti-ghosts (recall that each parameter of the
transformation gives rise to a ghost), so the BRST transformation gives:

Qx = x× c (36)

But now we have a problem: the BRST symmetry also "contains a symme-
try":

Q(x + γx) = x× (c + γx) = x× c (37)

where γ is a parameter. It follows then that (as it would be expected in
case we have a symmetry) S + Qψ is a degenerate quadric form, so we can
not apply perturbation theory around a critical point. Indeed, this becomes
explicit if we write Qψ:

ψ = b · (n× x) +
α

2
b ·B (38)

Qψ = B · (n× x) +
α

2
B ·B + b · (n× (x× c)) (39)

The term b · (n × (x × c)) is the "bad term" in ψ for it makes the form
degenerated due to the mentioned symmetry c 7→ γ. It should be noticed
that this symmetry stems from the fact that the isotropy subgroup of SO(3)
of an arbitrary point on R3 is not trivial.

The BV formalism is developed to overcome this difficulty (although it
applies even when we do not have such "symmetry of the symmetry"). The
idea is to treat all the variables — physical ones, auxiliary fields, ghosts
and anti-ghosts — on equal footing, and apply the ideas used before, i.e.,
add extra variables in order to make the quadratic form non-degenerate. In
doing this, we are going to have to add extra variables in order to eliminate
the symmetry of Qx = x× c. When we first added new variables in order to
deal with the symmetry of the action we called these variables ghosts. Since
now c is a ghost, the new variables which eliminate that symmetry are called
ghosts-for-ghosts ; these will be responsible for fixing this extra symmetry
that we found.

Now we proceed as follows: first let us develop the ideas of the BV for-
malism using the first example as a guide, then we go back to the SO(3)
example and deal with it.
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2.1 BV algebra

The basic idea is to double all the fields. A bit more formally, we are going to
introduce an odd sympletic structure (or supersympletic structure). Consider
the symmetry

δxi = λεijxj, i.e. δx2 = λx1, δx2 = −λx1 (40)

(we are writing the infinitesimal rotations in Cartesian coordinates, differ-
ently from what we did at the begining when we used polar coordinates)
Then we have

I =
1

2π

∫

R3|2
d2x dB db dc e−S−Qψ (41)

ψ = −α

2
iB + bf(x1, x2) (42)

Qx1 = cx2, Qx2 = −cx1, Qc = 0 (43)
Qb = iB, QB = 0 (44)

Let φ denote any one of the fields, i.e., φ ∈ {x1, x2, c, b, B}. Add fields φ∗

with opposite statistics. So φ ∈ R3|2 and φ∗ ∈ R2|3. φ∗ are called anti-fields
(do not confuse anti-fields with anti-ghosts). If φ has ghost number n then
φ∗ has ghost number −n− 1.

Define the bracket

(A,B) =

−→
∂ A

∂φ

←−
∂ B

∂φ∗
−
←−
∂ A

∂φ∗

−→
∂ B

∂φ
(45)

(a sum over fields and corresponding anti-fields is understood here), where
the arrow −→ means derivative "from the left" and←− means derivative "from
the right", e.g.

−→
∂

∂c
(bc) = −b,

←−
∂

∂c
(bc) = b (46)

since b and c anti-commute. If follows

(φ, φ) = (φ∗, φ∗) = 0, (φ, φ∗) = 1 (47)

Now we look for an action SBV such that

Qφ = (SBV , φ) (48)
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The idea is that SBV will encode information about both Q and S. We
construct SBV of the form SBV = S + Smin + Snm, were min stands for
minimal and nm for non-minimal. The non-minimal part contains the fields
b and B and its corresponding anti-fields, the minimal part contains the
remaining ones. In our example, equation (48) is satisfied if we put

Smin = (x1)∗cx2 − (x2)∗cx1 (49)
Snm = −ib∗B (50)

For example (recall that φ∗ has the opposite statistics):

(−ib∗B, b) = iB = Qb (51)
((x1)∗cx2, x1) = cx2 = Qx1 (52)

The non-minimal part is always given by (50), so the interesting part is the
minimal one.

Now we have

Qφ = (SBV , φ) ⇒ Q2φ = (SBV , (SBV , φ)) =
1

2
((SBV , SBV ), φ) (53)

hence (SBV , SBV ) = 0 implies Q2 = 0 (54)

(SBV , SBV ) = 0 is called master equation. Notice that if we set all anti-fields
to zero we recover S, i.e.,

SBV |φ∗=0 = S (55)

Let us introduce the operator

∆ =

−→
∂

∂φ

←−
∂

∂φ∗
(56)

Then

∆e−
Γ
~ = 0 ⇔ ∆Γ− 1

2~
(Γ, Γ) = 0 (57)

Indeed, apply ∆ to e−
Γ
~ , use the chain rule and the identity

(Γ, Γ) =

−→
∂ Γ

∂φ

←−
∂ Γ

∂φ∗
−
←−
∂ Γ

∂φ∗

−→
∂ Γ

∂φ

=

−→
∂ Γ

∂φ

←−
∂ Γ

∂φ∗
+

−→
∂ Γ

∂φ

←−
∂ Γ

∂φ∗
= 2

−→
∂ Γ

∂φ

←−
∂ Γ

∂φ∗
(58)
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Here Γ = Γ(φ, φ∗) is a function of φ and φ∗ (in general Γ is thought of as
a quantum version of SBV and (57) as a quantum master equation). ∆Γ is
called anomaly. We want solutions to

∆Γ = 0 (59)
(Γ, Γ) = 0 (60)

(in general in the mathematical literature people treat the full equation ∆Γ−
1
2~(Γ, Γ) = 0).

Now we can rewrite the gauge fixing Lagrangian S + Qψ as [SBV +
(SBV , ψ)]|φ∗=0. Define

eLψSBV |φ∗=0 = [SBV + (SBV , ψ) +
1

2
((SBV , ψ), ψ) + . . . ]|φ∗=0 (61)

In most examples higher order terms vanish if ψ does not contain anti-fields
and ψ is linear in the anti-fields. Then

eLψSBV |φ∗=0 = [SBV + (SBV , ψ)]|φ∗=0 = S + Qψ (62)

2.2 SO(3) symmetry

Now we return to the example. Recall that we have

ψ = b · (n× x) +
α

2
b ·B (63)

Qψ = B · (n× x) +
α

2
B ·B + b · (n× (x× c)) (64)

and S + Qψ is degenerate. We want to construct SBV = S + Smin + Snn

and a new ψ which satisfies the master equation. Recall that Snm is always
the "trivial" part, so what we really need is Smin. The idea for "guessing"
how to construct these quantities is that we should add as many anti-fields
are necessary to simultaneously (i) make ψ non-degenerate and (ii) make
SBV to satisfy the master equation. Moreover, we want ψ to involve the
least possible number of fields and anti-fields and Smin the largest possible.
Keeping in mind that ψ has ghost number −1 and SBV has ghost number 0
we can see which terms are allowed to be added (for example, we can’t add
a ghost number 0 term to ψ). Looking at the grading wee see which new
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variables we need to introduce:

−2 −1 0 1 2
x

↙ ↘
b c

↙ ↘ ↙ ↘
β B, α γ

↘ ↙ ↘ ↙
B A

(65)

The left-to-right arrows indicate the action of Q; the right-to-left indicate
the action of what would be called "anti-Q" (which we do not treat here).
The new variable γ was introduced in order to eliminate the aforementioned
symmetry Q, so it is an example of what is called ghosts-for-ghosts. The
ghost-for-ghost has degree or ghost number 2, one above the degree of the
ghost (which is 1). If we had a situation where γ also has a symmetry, then we
would need to introduce more variables to kill that symmetry; and we would
end up with a degree 3 variable i.e., a "ghosts-for-ghosts-for-ghosts". Notice
that γ is a scalar since the isotropy subgroup is U(1) (one-dimensional) (or,
said differently, because the parameter appearing on (37) is one-dimensional).
The anti-fields A and B were also introduced.

Now we can write down what we need:

ψ = b · (n× x) +
α

2
b ·B + αB+ βA + βn · c + αn · b (66)

Snm = −ib∗ ·B + β∗ · B+ αA (67)

Smin = x∗ · (x× c)− 1

2
c∗ · (c× c) + c∗ · xγ (68)

(notice that the degrees match, for example, the ghost number gh of βA is
gh(β) + gh(A) = −2 + 1 = −1 = gh(ψ)).

Now it is a lengthly calculation to show that all our requirements are ful-
filled: ψ is non-degenerate and SBV satisfies the master equation, (SBV , φ) =
Qφ; this is left as an exercise.
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