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Potation
Unless stated otherwise

we adopt
C reel inlice run from 0 to 3 Latin indices fromto and repeated indices are summed over theirrangexd denote coordinates in spacetime with

X t denoting a time coordinate and x 3
denoting spatial coordinates We write lfzdj.nosimply 9 a for the corresponding basisofcoordinatevectors

Signature convention for Lorentzian metrics isttt

Indices are raised and lowered with the
spacetime metric

We use units where Ce 8T G I where
one is the speed of light in vacuum and G is
Newton's gravitational constant














































































































a D in the covariant derivative associated with the
spacetime mitral

It denotes the Sobolev space with norm Il
p

Def definition Theo theorem Prop proposition EX
example

W will assume familiarity with Lorentzian geometryand Einstein's
equations Unless stated otherwise we will always

assume given a differentiable four dimensionalmanif.lt M equipped
with a Lorentzian met in

g s My will be a spacetime

where o r diet Itenser etc I will be defined














































































































Introduction

The field of relativistic fluid dynamics is
concerned with the study of fluids in situations when
effect pertaining to the theory of relativitycannot be neglected It is an essential tool in
high energy nuclear physics cosmology and astrophysicsRZ DR RnWe Relativistic effects are

manifest in model
of relativistic

fluids through the geometry ofspacetimeThis can be done in two ways a by letting thefluidinteract with a fixed spacetime
geometry that isdetermined

by a solution to vacuum Einstein'sequations or b by considering the fluidequation coupled to Einstein's equations Isca we are neglecting the effects of the














































































































fluid's matter and energy on the curvature of
spacetime while in b such effects are

taken into account We will discuss both

situations

A crucial aspect of relativistic fluid dynamicsis that the mathematical structures presentin the equations of motion are
substantially

different than those present is classical
meaningnon relativistic fluids e.g the fluidvelocity satisfies a constraint in the relativisticcase

something with no analog in classical
fluidsThus results for relativistic fluid cannot beobtained as a simple extension

of techniquesused for classical fluids














































































































TherelativisticEulenequation

The dynamics of a perfect i.e no viscous relativistic

fluid is described by the relativistic Euler equations to be
introduced below

Def The energy momentum tensor of a relativistic perfectisotronitft.it hesymmetriotwo tense

Tap pts uaap t pgapwhere
g is a Lorentzian metric p ant s are real valued

functions
representing the pressure and energy density of the fluidu is a vectorfield representing the velocitythe fluidand normalized by

lung gaputup Wu L
S u is tim like

Demark u is often referred to a the fluid'sfo velocity emphasising that it is a re to field in
pacetime We will refer to it simply a velocity holes th
cuminology is ambiguous or we want to e phalize its four dimensionalcha a ti Similarly f other

four quantities e.g for accelerateet














































































































thank often perf t fluid are also called ideal

son author eg Rz rese o the terminology ideal tothing 3 gg yggggggfl id that obey the equation of state of an ideal gas

Recall that in relativity observe are defined by their
timelike world line up to re parametrization Mo

precisely
the noun of a tangent se to to the would line has no

physical
meaning if the parameter is not specified Thywe can choose to normalize the oboe ee t relent to 1In the can of a fluid we can identify the flow lineof a with the world line of observer traveling withthe ft it particle

thighs I also says that u is timelike so fluid
particles do not travelfaster than or at the speed of light
this normalization hasyet as.tt physical interpretation














































































































The
energy density g entering in T is the energy

measured by an observer traveling with the fluid i.e atrest with respect to thefluid It is possible to show
usinginctic theory that the

energy density measured by an observerwith
velocity o will be o opTap Thus for thefluid velocityitself we need to have g whuptap the uh 1 Letus make another remark about kinetic theory it also gives the

T
above expression for as a continua limit whos

viscosityignored and under certain natural assumption Gcw Whilekinetic theory provides what is probably the best justificationfor defining T by the above formula it is also possible

to postulate T motivated by physical considerations we

The normalisation
thigh I also implies that the

fluid's acceleration at night is orthogonal to h
heun sparelihel since hdDpha 0

Finally the celerity normalization allows us to
define a fluid

Efim
what

is an orthonormal
frame such that e n














































































































The fluid is called isotropic as we are assuming that if
one is at rest with respect to the fluid then the stresses in all
directions ofthe fluid are the same This means that in
a RF T i i p It is possible toconstruct fluid mode
without this assumption RZ S

w

d
we will not dealwith nos isotropic pefeetfluids

Fo fluids with riscosity to be introduced late isotropy does not

l

g qq.gg
fluid is defined by

J nut
where h is a red valuedfunction representing thebaryon number
density of the fluid and uh is the fluid's uol.ciyassbove

Physically the baryon number density gives the density
f matter of the fluid the rest mass density measuredby anobserver at rest went thefluid is given by nm where m isthemassofthe baryonic particles that constitute thefluid these

arenotions from kinetic theory RZ














































































































Physically the quantities p g and u ane not allindependent and are related by a relation known as an equationEstate whosechoice depends on the nature of thefluill Undernormal circumstances
e.g absent phase transition this relation isnoentible knowledge of any two quantities e.g s and u determinethe third leg p In this case we can choose any two outof the

bree quantities to be the fundamental primitive variable unknowns

We will choose here s and h assumingthat p is given as

jj

possible to use the n dynamite relation I see bedul to introduce
other scalar quantities of physical interest such as temper t reor entropy and us then instead a primary variables

Itt fythelarefuation
are defied by the

conservation of energy momentum
Da Ja O Cconservation of baryonic charge

Jaguar 1 Ireloity normalization
p posing equation of state














































































































where T and J are as above pas s is a gives equation

of state O is the covariant derivative of the metricg
figuring in T

Th On physical ground we want s 20 420 and in most
models p20 From the pointof view of the Cauchy problem these
should be assumed for the initial data and showed to propagate

Remark As sail in the introduction we can consider a relativistic

fluid fixed background o couple to Einstein's equations In the

first case which will be treated in this section we assume
g given but

c keep track of derivative ofgforfuture application toEinstein's eq
We introduce the tensor sym it in two tensor

Tap gap thane

wich corresponds to projection onto the space orthogonal to u i.e

Tapup na t
hating 0 and if u is orthogonal to u we hav

Tarot on thanpop on

It is convenient to decompose IT in the directions paralleland orthogonal to u














































































































Pat Oa Rts eruptPga
usualpts up t pts Pau up t pts n'sup t Opp tho

up IT usualpts pts Ku't pts
II theOpp

u Ug Pts Ru
TheRT u Pacpts

II t pts gutarea t pts fugue
TheOpp pts a gripup tunnel up t theOpp

Faun To
pts uhOgun t theOpp

Writing Oath explicitly O I 0 nut a Woah th kn

therefore we can rewrite the relativistic Euler equations as
u Pag t pts Pan 0

Pts u Ruf t If Dap 0

woah t h Dan I 0

The first equation is the conservation of energy the second
conservation of momentum and the third equationt fi j

e

a ha the continuity equation in the conservation of bary
entity These














































































































fuation in the non relativistic limit RZ

Obscuring that without
assuming was l but still

taking a timelike so that the prejention e t the o thy ndo n is

Tap Jae

II
contracting the momentum

equation with h fire
lets u'D yall 20

Thus fo pts o nuts I provided it holds initiallyie the constraint u at 1 is propagated by the flow
Earl Henceforth we will always assume that one ofthe equations of motion is the constraint

ja what O This will
be the case inclding fo the visor theories we discuss later Th s
Jaguar l will often be omitted

While it is not difficult to obtain local existenceas l
uniqueness by writing the above equations as a first ordersymmetric hyperbolic system I see e.g An CB we will use














































































































a
different approach due to Lichuerewicz Li generalizingearlier work of Chaput Dr hat FB that makes the role

of the characteristics manifest and connect with what we willdiscuss later In fact as we will see but also as expected
physically there are two types of propagation in the fluid

haracteristisand thushoulstreated different thefirsti i i
Before continuing we will need a fewmon.net

T.hermodynamicprope
tiefeltivtifu.de

We begin introducing the following quantities
The internal

affinity
E of the fluid

strictly speaking the factor n should be the rest mass
density um see above but there is no barn in setting
m t here Thus the energy density of thefluid takes intocount the energy comingfrom thefluid rest mass














































































































The specifenthalpy h of the fluid
h
PI assuming 4 0

We assume the existence of functions s and Ocalled the entropy density a 4 a
specif entropy andtemperature of thefluid such that thefinstland

thermodynamicsholds
dp i n th nods

which can also be written

ds hdu t nods
d E pd t t Ods

the spearfin entropy and temperature can be introduced in a
me a system ti way see LL Rt we will often dup
specifi and refer simply to the entropy enthalpy et

As before we can choose which two functions amongthese thermodynamic quantities are independent with the remainingon being function of these two Different choice will bemore appropriate
fo different question














































































































with these definitions we can write

Tap pts usup t pga I uhhehe t pgap the
Pat Blah n up t ah u sup t Ppp so

up 9T Pacuh d t apopp

Under the physically natural assumption 050

ihhhereaftqggij.cat
Physical interpretation the fluid motion is locally
adiabatic i.e entropy is constant along the flow lines
of the fluid














































































































Thecharacteritisofthetile

systend
sing g and s as

primary ra iable the relativistic
Eule systen can be written as

pts n'Tuft of it Oag tf 10 s o

ndDag t pts Deal 0

Wks o

or
eqirale.tl A D 0 when I at f s and

ya
diary fear far

Hts Sf uh in
O

O v4 O
in in

f
Thi

dat A us dat f
lets sa f ti's

pts 5 445














































































































I the mat it if we multiply the firstfour vous ly
sp and subtrait fu it the fifth row time a's

I def sin's si
o

s

n'sat tarsal
s

pts In's Messi f t

One set of characteristics is th s given by a 3 0 i.e
the flow lines Fo the tern in brackets the invariance of
the chaanteristin allows us to introduce a convenient frame
et I with co u and leses es orthonormal and o theyendto
u W also introduce the dud frame et

s given by

ft it mABle I lwhere m is
g expressed in thistram

which than tale the form of the Minkowski metric s thateaten day
Decomposing 3 with respect to the dual foam

I eft3 we have 51 0 57 0
Us and sA i dA

where of IT 3 and SA Ef 3














































































































Therefore the
remaining charantevistin are determined

by

I I o

If f Lo there are no real solution so the equation will
not be hyperbola If 91 t than 3 not be timelike so th
corresponding cha a teristi speeds will be greater than the speed of
light I see also remark below Both cases lead to an e ol tie
compatiblewith relativity so we henceforth restrict our attention
to system forwhih Of of E l The case when 91,20 s allowedg
has to be treated with some additional care as it correspond
to some sort of degeneracy which will in fait be present in H
case of a free boundary ft id stdied late I so we consider

f no only o c f I 1 In this case the
corresponding

characteristics have the stratum of the opposite conewith opening fire by Ffg this can be seen e.g from theabove expressionfo 31 o This con stratum is interpret as














































































































corresponding to the propagation of sound wave see below It makes

sense to call thin one scene or acoustic and to define
the fluid's sound speed as

ai Il
when we write I t emphasise that ft is taken at constants i.ewhen

p pls s On ca heck that c hasunits of speed
the corresponding picture in tangent space is

sound conewithCs

Cs Cs
seed conewith a

light cone














































































































To see that the sound cone indeed correspond to the
propagation of sound wares we take a u derivative

of the conservationof energy equation

O nip tall s t pts V at
include curvature tern

urn Orog t pts 0 lupo ut LET

Ty the momentum equation

t're
ratio g c throngs Lot

which is a wave operator fo g whose characteristics are the sound
cones and which correspond to the physical intuition

of so atwars
propagating as disturbance

expansion and rarefaction of density
The above discussion motivates the

following

Ref The Isticalmatical is th Lorentzian
mature

given by

Gap I 5 gap t les thane
chose inve u in














































































































E Y c D cap

cigar th line

stumptions o case and ing I I ensure that G is indeed a
oventzia metric t.toalso that Gaph up I

m

IM Ijjjjj jjj jjj

The existence
of the acoustial metri and it relation to the

acoustin
geo aty i c the characteristingeometry of the acousticsi i iiiiii

It n.tt teoiifthespaatine is Minkowski When

i i iad acousti geometry interact with each other
giving rise to a

penal as we no longer obtain a Lorentzian metric in this case
I son the charmteristin of the Euler system are

he sound cony corresponding to the propagation of sound and
h flow lines i e the integral curve of u which as he will
see next corresponding to the transpo t of wo titty in the flit














































































































tch Above we excluded
of I based on the

physical
requirement that no information propagate faster than

the speed of light Ioften called the pristineof cality we
will have mo to say at t causality when we stdyriscosfl i.tlOne can ash however

if we call it dy fl it with f si fa purely mathematical point of view Computing

data's pts tag t t t t t
of nisi

where wa clos no mad coordinates at a pointfo simplicitywe see that while A is innertitle for any h if f e 1hi invertibility of A canfail otherwise s e.g u cannot beprescribed arbitrarily Sinn inontibility of A is needed to us ofmany basin PDE tool le j the a by Kowalershaya theori in theinplest can of analytin data alternatively we can say that if fha there are choice
of u that meh the initial surface t ohavanteristic t we see that the assumption

get is all
notified mathematically














































































































Relativistroaticity

A very important quantity is fluids is the
vorticity For classical fluids it is the curl of the
velocity alth.gl on often we h with the spentin vorticity
i e the routinity divided by the density Since the curl in
3d can be identified using Hodge duality with the exterio
derivative of the velocity thought of as a one fo ul
o a suitable multiple of it in the compressible can it see
natural to define the vorticity of a relativisticfluidwhere we are in four dimensions as the exterior derivative
of the four velocity a with an important destination that we
discuss below this is what we will do

Def The enthalpy current w is defined as
wa shut

The Iticity I is defined as the two for du














































































































I components it is given by the equivalent expressions

Sap da hap Op hug

Valhurt Op hunt

One reason to define the vorticity as above
rather than

say du is to have a relativistic
version of felviniscirculationtheonrem Fo a
classical fluid with velocity o we define its circulate
along a closed loop P as

Gal fo o dl

p
Kelvin's theonen state that this quantity is

conserved along flud lines i e

Otto D l Ool

Th picture below illustrate this situation will V depicted
at two different tiny














































































































Piti

Ii

antenatalas conservation of vortices that we expect somethingsimilar to hold for relativistic fluids Indeed itdoes but the quantity that is conserved non b

b Gp w dx huadx

with this definition

410,6 0

The same way that the classical proof goes through
using do which is the vorticity the relativistic
version involve d that leading to a natural definitionof the vorticity as we did See RZ for details














































































































text we derive an important relation between
the vorticity and the entropy Direct computationgive
uh tap us high t Patup hyun Ophual

hasta hp t upwoah t tph

Il by the Dat 20

IT Dap ut it D p

t it V p t up u ight Deh

I Opp t o h up tundrap woah

tf Tho

This equation is known as the Lichnerowitefuat
iii

iii

fluid with 1 0 the entropy must be constant
a result with no analogue in classical physics














































































































iiii iii.IE iiuist
eueaeguatiat a system fo w uh h and s We assume that

p n O and E ane known functions of h and s
We begin with an evolution equation for thevorticity We can write the Lichneronicz equationas after multiplying by h

in a hods

where in is the interior contraction of the
two form s with w

gives by

ins wraps
Taking the exterior derivative

d line d chords

where we used that d 0 and I is the
wedge product of forms which for one form is

simply














































































































why a dry ppdxp warp dxandxp
2 warp mew l trend xphap

Wo now recall the following formula
for the lie derivative of a form in the direction
of a vector field I

Le g d lied t i dy
In our case da 0 since I du so

Lwr dcholnds

Using the formula for the Lie derivative in terms
of covariant derivatives

expanding the RHS and
writing everything in components

gives
wit ha t Dawid t Dewees
O ho Ops 0,14017 s

which is our cool tie equation for the vorticity














































































































This equation is intersting because of thefollowingFron the momentum equation we have hab und pnds
commuting with h to get w we have waw ds oh
Since I now we would thus naively expect
us far nd's 22h However this does not happen
the structureof the Lichneronicz equation which in particular
casts as as as exact derivative ds leads to only one

derivative on the kits This gainof derivative will
help with existence all uniqueness below

In particular we point out how thefirst lawof
thermodynamics was used in the derivation of the vorticityequation we did not simply apply upon to I and used
It 0

Before continuing let us consider an application As
een a necessary condition for irrotacionality is that s constant I
fact we have

Prop If s constant and 1 0 on It ol the
s constantand r o for t 0














































































































Proof Integrating us Is 0 along the flow line
of s give that s constant on spacetime Thus the equation
for the vorticity gives

Lwr 0

which is a homogeneous transport equation for r Since
I
f of 0 uniqueness gives 1 0 Il

Remark Of course when we say 1 0 for f o we
are referringto t belonging to an interval where the solution
exists

Next we derive an evolution equationfor wWe start with the Hodge Laplacian not really a
Laplacian because

g is Lorentzian of w

Ily w dd t d d w daw t dtr
where d is the adjoint of d Since dtw Kws compute
dt w Paw O chad n'fat head

on

n'Blt futon his














































































































w I It in d F

where F log Thus

dd w dl in d F Lw dF
It will be convenient to introduce I h and consider

F F I s Then since waw 42

IF JEDat t E Ks E's wry t Is

2 If we we E Ks

28 we rapt Opwa t E Ks
2 Eurowa t 29gweep t Erasin

hogs
2

werewa t Ey hot E Is

To simplify the notation we henceforth adopt














































































































Potation We will use B to indicate a genericexpression can vary from line to line depending aat most the number of derivative of its arguments
Using the formula for the Lie derivative in terms

of covariant derivatives

Lud F p 2 w wet Pewp a hot jurors
t Bldg is dw

But who ops whereas Uplifts Opus as

Baldy Os Ow so

Lud F p 2Ey w wit OpWrt Balog Os Ow

On the other hand

Byu g Drown t know s

g O O up tap w 2Ey w wet OpWn

dtr t Br log OsOw














































































































compute 297 2 It tf log 111ft t

till 4 this

g 1 484 1 Your

Rnaw t dtr t Bp log OsOw
Next we apply WMD to this equation and compute
who Carl wig Durin

wrongs n turf Riot's n
t drop is

Or Curgirl our grip
TB log Ow ds Oh a

By d'g d w d's 02h Or














































































































Tho got 11 1 1 1 wiggyup

By 02g d w J's 934,91
We now insole that the sond speed is also fire by see Rt

L

so after miltiplying by as

cigar it
city Juri 0,0 up in 103,0 s's lion

and we recognize the inverse acoustical metric in bracket

E lis 4 ul wigoad up Br 02g d d's 02h or

where we wrote E f Isilwt to emphasize that we view

E a a function of sit and w The cha a teristiy of the
operator on the hits are the sound cones and the flow
lines From this we obtain

Ken The operator

o arioso
is a third order hyperbole hyperbole operator














































































































We now consider the equations derived for s I andw In these equations we treat has a function of w byh _wtw and expand the covariant derivatives
absorbingthe terms in the Christoffel symbol into the B ternson the kits of the equations Doing so we find we

multiplied the equation for s by 4
who s 0

w

frap Bldg Ow ds nxp

IG P ur daddrug Bolo'g ow 03,01
Next we note that the order of derivatives appearing on the
RHS is compatible with the order of this mixed order system

Laracteristics of the operators on the hits recall that at
I S I III I

therefore fire ly was 0 theflow line and
Gh f es 0 1 the sound cone In particular our
e ivation didnot introduce spurns clavateviolins














































































































Denote by 11.11µ the H Sobolev norm in A

Invoking standard energy estimates for strictly
hyperbolic operators see e y Ho3 Le we obtain

tIl s Il
µ 11510711

µ
tJ BC w

µ s
µ

O

All
µ E Riot 11

µ
t J Bl g w

µ d

w
µ
E

viat f tuts µ z uta d

where we use the following abuse of notation when we estimate
a term like 110 s

µ the derivatives could be time derivative
so we have 1102511

µ E Il SHµ thotsHµ t 1171511
µ Butfrom the pointof view of derivative counting all teams

contribute the same Also on the LH we should have
w
µ at 11Otw u 1 110thw Il

µ but all term contribute a
w
utz Switching µ to Ntl in the estimatefor S andP t 2 to Ntl in the estimatefor w and

defining
W lls

µ t 11h11µ t 11h11pet














































































































we obtain
tor s Ncos t feet

which implies the energy bound for small t

W E Claro
This estimate is the main ingredientfor a proofoflocal existence and uniqueness similarly to the standard

argument for non linear wave equations

Other elementsfor the proof are
Under the above assumptions o cc El n O 0 etcit is possibly to successively solve for the time derivativedin Ots 9th in terms of the data This implies ca thatwe can construct initial data for the s new system

out of data for the original system and b thatwe can construct analytic solutions to the original
equation ofmotion These analytic solutions satisfy the
system for s n w with rap a dacha op hua and
wathun Given non analytic data to the original














































































































system we approximate it by analytic data ail
use the energy bound that holds to the analytic solutions

to obtain via a limit a non analytic solution to the
original equations of motion In particular we have
a solution to

pts uhPau t HyVap 0

where IT is as before the projection onto the orthogonal
space to u but we do not know yet it to have thetornTap gap than because we have notyet showed that
lulgh 1 However we saw that this constraint is propagate
Finally uniqueness can also be proved with an energyestimate
in a lower norm for the difference of two solutions

we remark that N in the above
estimates has

to satisfy N 2 312 since we need to use Sobolev estimate

and product estimates From who s so we obtain that
s will remain positive if initially positive and from0 I 0 written a uh if log far the same holds














































































































for a provided say that the fluid's velocity does not blow
up Depending on the equation of state f on the thermoynamic relation we obtain positivity of O p and E PuttingU together we conclude

Consider initial data in

a hoist even again it
an equation of state such that s h O n E p to

0 and
uh that o c as

f of 1 Assume also that inly t at t 0
Then there exists a unique classical solution to the
relativistic Euler equations defined fo time interval

Remark We have written the relativistic Euler equation in
a way thatmade it characteristics explicitandallowed us to
prove existence and uniqueness But the way we wrote them is notyet2001 for further applications and we will present anotherfanof writing the equations later on














































































































t I a

paninotatient
I d w 0 In this case locally

we dy
fo son fun.tn of Co n ti g the Hodge Laplacian

Ey of 4th t d'd d e d dy d w in tf

fo F a log according to our previn calc lations

B t we also showed that D F
231 flaw t Is

i n and a
t.lt fill t th

wtf It grown I 494 the
n
ltiplying d dy in tf o by s and

using that
d dy 0,0 d threaded we find

cigar in city no 4 4 994 0

where wa 0 4














































































































The Einstein Euler system

newitnowconsidetherelativistic
Euler equations coupled

to Einstein's equations

Rap targa Agap Tap
where A is the cosmological constant As usual we write the
equation at

Rap Tap 1,21 T gap t A Jap

We consider the problem in wave or harmonist coordinates and
employ the alive form of thefluid equations so the system reads

IgMdid Jap Balog w s

who s 0

w

frap Balog ow ds n

IG P ur daddrug Bolo'g ow 03,01
We can

carry out energy estimate as before to get withthe same abuse of notation as before














































































































tAglut I 11gootlly t f Bl f Nta why pts
tIl silly I 11510711 tf BC w

pity put
O

hell I 11Ncos Il t got B light why
put

d

Il Wil f Il wco lat tf B g putz ll
pay l hell

and once
again we observe that these estimates close leading

to existence of solutions see Li We leave the formulation

of a precise statement of existence and uniqueness in the

geometrin sense at an exec lise














































































































IformulationofthevelativisticEulenefuations

The equation we derived in order to obtain local
existence and

uniqueness for the relativistic Euler equations
involve operators thatmake the role of the characteristic
manifest Nevertheless such equation are notyet good enough
for more refined applications such as the study of shockformation
or the studyof low regularity solutions Here we will presentyetanother

way of writing the relativistic Euler equations Aswe
will explain this new formulation of the equation exhibit
several remarkable features making it amenable to certain
application in a way that other formulations are not

Auxiliaryquantitie
We continue to use the same notation as beforefor therelativistic Euler equations and here we introduce several new

quantities that will be useful in whatfollows Throughout
we denote by sherd the totally antysymetric symbol normalized
by 0123

1














































































































Assumption For simplicity in our new formulation ofthe relativistic Euler equation we will assume that the spacetime
metric is the Mi houshimatric The coordinates Klas will
be standard rectangular coordinates

Def We introduce

I log 4 5i

ii
where I is some fixed reference constantvalue

or t cu gird updrug
The u orthogadoaticityocct.fi

it rout ha
The entropy gradiest one form

S a das
The modified vorticityof the vorticity

chavortterruhir
10 9715dg t 10 Fatu's Ii co g s jeque














































































































The modified divergence of the entropygradient
D tqstttstgitcistg.it

The modified quantities C and D come about because ofthe
following In the application we will discuss we need to
estimate vortices and 91st but a good estimate is not
available for these quantities However adding theright
combination of variable to routhot and I s we obtain
quantities C and D that satisfy equation with a good
structure for which estimates can be derived

The a orthogonal vorticity i is related to s byduality

d
a I teappuri The roleof i is to provide the vorticityiii iii iii iii

Assumption In the previous definition as well asin the ensuing discussion of the newformulation of the relativisticEuler equations it is assumed that I and s are the fundamental
thermodynamic variables with h n O f E and p being
function of I and s We also assume ou construction to be
such that O L as csch s L














































































































Def The n formonelatinetoGane thefollowing quadratic
forms

Qc Ce 4 15 d copy

Qa 19,41 0 40,4 0,494
The use of null forms has a long history is hyperbolic PDEs and

we will highlight their properties below

new foundation of the relativistEuler equations As the actual statement of the newformulationis quite long we will giveonly a schematic statement
We will use e to denote up to homeless terms where
harmless here mean from thepointof view of the applications
we discuss further below

Itself Assume that h s n is a

C solution to the relativistic Euler equations Thes Ch s u
also verify the following system of equations

Wafquations

Deke D t Q OiOu LOT














































































































Ign I C t 0105 Ou t 2105 Ou

Des t D LCORI

Thansportequatio

utd s 0

uld s L Ou

uld i e 119594

interim
hort s 0

exit 11051
uld c I C D tacos di ohOu

OS di Oh du

Above LL of dfm denotes linear combinations ofterm that are at most linear in dfi whereas
Q1 Ofa dfa denotes linear combinationsof the nullform
relative to G De is the wave operator wir t G and in

DG u the wave operator acts on at treated as a

scalar function














































































































Prof the proof in q ite long and we nefe to
CDs for details The core idea is to differentiate a

first orde four cation of the equation with several geometric
differential operators and observe remarkable cancellations

In oude to illustrate the type of cancellationwe are referring to lat s doin the war equation f it
Simple computation

fire that
det G 56

Hotel y't't c
g t as ci th af

From this di eat comp tation
gives

act
Eep

o hate caroni

a d f 1a ai a nitrites g ro s
it state tarot ti estshape.it35 c 14h7asnpopt s gtro s
Lei














































































































ki ya's theorist cigargot
tianya.in ittci stgwo.iurgi
t.it

igs rii st
im

st.owii
s t.pro afroiciadiani

Luigi are s
So

Get

fi yass theorists g tics it on are
a insiniori c Kirsti so sit
In terms of our variable the moment n equation read

u'd up t of the n'ont g sp 0














































































































where
of Oh and the energy equation as

no i t a I a 0

Contrasting c gi d with the momentum epation

infants energy eg
cigars let ai soil dorado up
ciao cnn.it aruo.itcigopse

to
of sights slip

ein's i s argil n'stare it as giant
as ii safari

So

cigars pi unsure it as giant
storm's up ciao late.it some use I

cigars to II sigh t.ci slip














































































































we use this expression to substitute for the tern
cigars t o the Rite of Eci

nai micro.it is

Ivi
som

p
i

j

j

j

2 Opal by energy ep

ciorisar natured ai Hiiiii
so sigh cigars to

3 sigh
to slip














































































































tertian a Hiiiii
so shih cigars t a'g sigh

to slip
That sitseoritysio
naifD th city stop

neigh s killin

t Ci d a'Opal Ipu once t l ailgsigi
s soil to sights slip

We claim that this is no the desired
expression

The first term is the desired expression linea i D

the sent tern is a u bl form of type

Q Ce 4 Garde 0,4 with 9 4 I th that tern
is a u ll form of typ Qap 9,41 990,4 0,494














































































































with 4in and Y up the next three terns are linear

in oh and the last ten involve no derivative

recall that we treat S ai a variable

a

when the fluid is invotational ou her formulation
red cc to the equation found by Christodoulos in his
landmark work on sheik formation Ch In this case the
equations are the equation for the potential of demoed
earlier and the above equation for h the latte simplifies
considerably when d d because then s constant so all
term i S vanish in partiela D o Oo new

formulation generalize to the relationtin setting a similar
new formulation of the classical non relativist.nl
compressible E lev equation found by huh and Spe h

SI Lsa 153 Sp

It important to stress that ou new form lala














































































































of the relativist E le equation shall not be taken

for granted i e as a simple addition on the top of
the formulation found in the simple setting of inotational
or classical flown This is because the structure uncovered
by Christdo lo and Luk Speck are unstable under
perturbation in the following sense as ill strafed in our

derivation of the ey
ation f h the smallest change in

a n me ical faito or coeffilient no ld present th exact
ancellation needed for the foundation of the equations

We will next discus three application of theher fo w talion presented above improved regularity for the
entropy and ro tility existence of low regularity solution
and the study of shale formation None of these application
seem attainable

using standard formulation of theequations The latte observation is partie la highlightthe following despite looking a monstrosity the new formulation














































































































is very nice i.e the equation bae good strutune whereas the
original first order formulation despite looking simple is butbecause no good structure is priest

When
discussing these applications esperially the

two the following big prat ra idea should be
kept in mind The new form.tt ousfo the use

jyyn.y.pn.nn.mg
ii

iii

i iiii

Oyly 4 0

There is however a crucial new aspent at compared

for the interation of sand wars with transport phenomenai i i

system is a system ith n ftiple chavatteristin the sound














































































































cones and the flea linen not that this is not th
can fo an iv tational fluid where the only danaiteristic
re the sound cones in partie la this ill strata how the
notational and rotational case are fundamentally
different therefore the precise nonlinear structure

Imphasisinparticlasquadratterm and hull forms

i i that
he entropy and u orthogonal vorticity can be proven to one

degree more regular than what is given by standard theory

The relativistis Euler equations
are existence

uniqueness at continuous
dependence on the data with

h s n I E H x Att x H H

N 12th














































































































In other words if

his u Il E Hex It't x H H
t o

then this regularity is propagated by the flow The
crucial obscuration i that standard theory e.g symmetric
hyperbolic system or the mixed oderfumulation we derived
earlier gives only h s n t E H x H x H x H

in
we simply highlight the main ingredient

First it is not Liftic et to see that divert energy
estimate on the evolution

equations of the new form lato
lose derivatives For example we want to contr l h is it
and I in Ht The erudition for i give I w iting
s hematically and ignoring the data

use I n on Ill E ft h all














































































































whish is consistent with the definition of 5 Then

since C di the evolution fo n gives

Ich n Cn T

t t
all s s

re I
adult

at

by the estimatefor w

So thin is a test of derivatives The way around
this is to use the fait that i satisfies not only a transport
equation but Itaking all into a co ut the evolutionfor C cure it
a die cu l transport system Tho we can use elliptic regularity
through the dim cure part to gain derivatives

It is not however so simple The dir and curl
operates in the heafo w latio are spantime die and cure
operates We need to extra t regularity across t constant
surfaces and for this we need spatial din c ul operators

To d so we use the constraint

hath 0 undid Ju w














































































































which ultimately allows us to independently control the

timelikepast of 75 We can then remove this timelike
part of the die cu e system treating it as a sourie

obtaining a purely spatial dir curl system sina.la
rema h apply to S and the

corresponding die cure

El

Ich The atom procedure of extising the timelike
part of 75 can be done while

preserving the hull stature
of the equations while the all structure is not important
per se fo this improved regularity reset it is important
to the study of shehe discussed further below and isthe shark problem we need to rely on the extra
differentiability of s and I

Ryh I proved regularityto the vorticity and
entropy had been proven in the classical case by huh
Speck using the corresponding new formulation of the classical














































































































E le flow A key difference is that in the classical

setting the dir and curl an honest spatial operators
unlike the relativist case when we have to deal with
spacetime operator as mentioned above

Lowregularitysoluti

The standard existence tho y for the relativistic
E her equation give local well posednest in it fo
Y I th I taking say this uh a primary variables but

the threshold is the same if other pair of thermodynamic
scalar are adopted A natural question that drives
a lot researil in PDI is the of the minimum
value of t s ch that a five Pbt o system of PDE
is locally well posed in it A less ambition b f related
question is whether he can establish local well posedness














































































































is it fo t below the threshold
given by standard

theory where what is considered standard hatrally
depends on the equation Question of this type an

c m only referred to as Iwregularitygrestions
problenn

I the intational case the relativistic
Eule equation can be written a a system of the four

C 411419,0 4 014,041
where N is a quadrati no linearity To obtain the
equation in this fo na in fact differentiate the equation
for the potential of and put 4 14.041 the study of
low u

g laity solution of equation of this form has a long
history Some hey results which we state here in terms

oftheir translation to the invitational relativistic Erler
system are the following The in tational relativistic
E her equation are locally well nosed for














































































































thin H E H

with

Y I 2.25 1 Bahari Chemin DC

N
I 2.1610 ITataru Tal

Y 2 t 2 2.13 Kleine man Rodinia shi Kk

N 2 I Smith Tatar Sta alternative proof
by Wang 2017 Wal I

we remark the following

within the context of lines theory i e
assuming

a pre penfied regularity for the coeftive ti t t no

further assumption on then is one cannot use that

age satisfies an equation Tatar 1316 result is
optimal Sti

Smith Tataru N 2 is optimal under the stated
si motions a Lindblad Clin proved ill posedness in It














































































































The breakdown mechanism is the instantaneo formation of shock
We can now ash whether similar low regularity result

to hold in the can I 0 As sail the rotational
and invitational case are qualitatively different will
he transport part deeply coupled to the war part
more on this below a manifestation of the already all del
fait that for a o the relativistic Eula flow is
a system with multiple chavanteristic speed Therefore
one weld expe t that new idea are needed in this case
in comparison to the irretational can

Before stating what is known fo the relativistic
Eula

equations we fist t un or attention to the classical
compressible Erler system as its simple for will allow
a clearer discussion In order to help the connection
with the relativist in setting however in the theorem
below which is for the classical compressible systen
we make the following notational conventions














































































































it is the logarithm density I log f 550
a fixed bachy oral density

u is the classical velocity so u tut ah u'll
D Of t hid is the material derivative

the classical analogue of ur
r is the specifin ro tility

m

S is the spatial entropy gradient
S D

i G is the acoustical metric which can also he

find fo a classical fluid and whose iharaiterishe sets
are sound cones gives by

c dtotttcitEHxa_ualtlCdxa_uadtla
1n.tthat C DB1 1 with inverse

E DOD to da a














































































































whew as is the fluid's soul speed as 41
when ni assume pi pis si a pit s

Variable G and D can be defined similarly to
the new formulation of the relativistic Euler equationwith

Cin curer Dr dir S

We intro hi I th hist and call the the
wave variable because they satisfy wave equation

P while the variable R S C D are called
transport variables as they satisfy transport equations
to I in both cases we are

referring to the
classical analogue of the he fo n lation pre inly discussed see
below

In order to state the throne we introduce

the notation 2 t o and date by C th
standard Hilder spaces Also f later use 21 ft constant














































































































theoCD L o Mazzone spechcdl.ms

Cons de a small solution to the compressible
Euler equation whose initial data obey the following
assumption for some real numbers T Lte a small a o

O C Da L d d L c c ca c o o lls i

1 It II u c rent t t list De aHYE H'tie
2 I 14

conga
f Dai

3 Along 2 the data an contained in the
inte in of a compant subset 4 of stat space
in whit g c and c f es s

Then the solution's time of classical existence T
depend only on Da and K T T IDaa hit and the
Sobolev and Hilde veglevity of the data are propagated
by the flow i e the noun we can control are uniformly
bounded fusition of IDs hit fro t E Cit














































































































Eh
The proof of this result involves several ideas of

independent interest sharp estimate fo the chavateristic
acoustial geometry strichartt estimate for wares couple to routility
Sohade estimate for the dir curl part

The main challenge is that the system now has

multiple character ti speeds Low regularity teahnique for
quasilinear systems are based on stunhartz estimates which
are well adapted to the wave part of the system 1 they
are based on dispersion Them are no Strichartt estimate

for transport equation no dope si l In addition one has

to handle the intonation of the wave and transport part
transport variable enter as source tern in the estimate

for the ace tin geometry see below This highlight the

fait that the notational and notational problem are

qualitatively different even the finest snout of vortinity
is a game changer recall the big ideal














































































































Aside from 15 at E It't 127.1 we have

the extra regularity assumption cu en E y't 12.1
s E It't 1201 IC morula re n D o's I E C 12

However we are able to propagate the extra regularity
of the transpo t variables ere thigh they are deeply
couplet to the rougher wave part of the system again
through source term in the acoustic geometry see below

curly E H't and s E it't ane like the improved
regularity we established before Ultimately our regularity
assumptions are tied to the regularity of the characteristics

Assumption 3 is a type of non degeneracy

In view of Lindblad's res lt our result i
optimal with respect to the wave component of the system
i e ti ul E H't 1201

Our result was the first low regularity resultfor a
system with multiple characteristics in threespatial dimensions
After it Wang Waa Zhang 24 and Zhang Andersson CIA
improved it I removing theHilde assumptions














































































































Kf The proof is quite long so it is not

feasible to provide it here We will discus the main

ingredient at a high level referring to CD Lms

fo details

strategy

I We will use known
teahnique from ware egation

energy Strichartt estimate to control the wave part This
req iris in partie la controlling the acoustic geometry the
regularity of G hull s fates i.e the sound comes Fe
his one needs to devise complementary estimate for severalcometrical quantities associatedwith thesound cone

2 We need to control the transport variables
at a consistent amountof regularity as in 1 Energy estimate
for transport equations are not enough and there are no strichart
estimate fo transport equation we combine the transport type
energy estimate with ellipti estimates

3 Transport variables appear as source terns in the
acousti geometry need to handle the interaction feature of
the multi speed proble














































































































EI É let as.ms constant

al c e e
t curls n ar la The classical compressible

Euler equation can then be written I new formulation
in the classical case CLS Recall G C1411

4 I If
t OE OE la

BR e OE 14

II
OE on 14

diva 04 Cdt

The OE o Rit are spacetime derivatives In general d E can
be ox on it what is related to the fait that both are
controlled in have energy estimates We downplay this distinction
o most of our discinion but at one point below it will be important
W mah the important observation that it is not

simply curl b ti't would give d É on kits then auto e

cancellation but this require working with G instead of














































































































could but here fo simplicity an identifythetwo However the
reade should see cu ha as a placeholderfo G as the remarks to be
mad fo could an strictly speakingapplicablefor d instead
To control 114ha take 0 t of a

Igo't I e d't curls

This we need to control o curl r E L Cannot use lb
as it give B

t
aurea t o't I But let give

B
t
over 04 d't n t o't y or

Ed Ti
so we can co tu l o t curl r E L provided we can

also establish d't r E ch The latter can be obtained

through the Holy estimate

11Telly I directly tha en n

Clay
s

110 ally
I tidied'tsell

lay
t cure o th

Illit














































































































combined with the above evolution for d curls and

Cdl which give
g't dire e o't y

kited that n d have 0 t r E L at t o for
when we Gwon all explaining ay of ou extra veg lavity
assuntions In the end we obtain the estimate

110411 t d
it

s e
lot

ein iii

i iti ii i
were the theoven if we can bend

110411
L c

E t E dat
o

f
11 11

gig
da data

Lily o














































































































For
11051144 the goal is to use strichartz

stimate sis they are designed to estinate mitel spacetime
on for wave system recall that I is a were raviablet
Fo link there are no strichnutt estimate al said
Since n satisfies a dir curl transport system we would like
to estimate

lollygag with elliptic estimes This doesnot
seem possible though since Calderon Zygmunt operator are
not bonded in La We can however 11

dully L by
the

stronger how 110111

Licia
i for c ell.pt

stimate are available.tt explaiso ultilde assumptia
on the data

Tsing Cauchy schwart in the time integral it
suffice to bond 4

eye
a l o

hey
the ref

established by improving forsmall tint the bootstrap assumption

1104114,4 t 2 u'd Prot life I 1
V72














































































































or t 2 11 v0
eye

t
v22

where Pu is the Littlewood Paley projention o t dyadin frequencies
and so is a small depending on E We refer to the first one as
a bootstrap assumption on the wave part and t the second at a

bootstrap ass uption on the transport part

Rah Only the bootstrap assumption on
d
La LgI

11041144 are needed to the energy estimates

The bootstrap assumption involving the sun are neededforcontrol of the acousti geometry
This discussion should not cause the impression that

the estimate f 11051141 and 11
444

a

decopled we need to handle the interaction between th
waw and transport part Isee below even if our

presentation discusses these estimate more or less separately
The logic of the argument is as follows when

I
tall of the ne ii connauisat

the pure wave case ideas that are needed and that au














































































































Bootstrap assumption

I
Energy estimate Hilder transport and elliptic

I Estimate f transport equations in

control of the acoustic
to de sp ie Icontrolflow line ofB

Iinteraction L estimate fo Stricharty Improvementofvaniport variable along
estimateou'd cones Hilder estimate fo gu

boutthar animation
for the transportpartthere St n Icontrolflow problem Hilde estimatefolineofL1 modifiedman Close

aspect fruitionequationsource argument
had Part consistent

Y transport variables
th improved war

I bootstrap
Relic a

zonkhe of a afan pm on f y
E background Transport Improvement ofpart need

bootstrap air mptionto beDecay fo linear rave consistent to the nave partin G bashgrond with rescaling
I ridation

Li scan Strichartz procedures

estimate














































































































We will discuss these steps in a co sturatie
hey i e no o less in a reverse order to the logic
above

starting with what we want to establish and
identifying what a neat to be true fo that to hell

Itiitinant
Strichart estimate

1105114
data

Next throng a series of technical reductions that
involve

reicaling energy estimates and the use of Duhamel's
primipla it is possible to show that control of 1194114
follow from the following frequent localized Strichartt
stimat for the linear in y ultimately because of D haney
equation 0,4 0

IIP 1911

4 L
t t I 110411

where P Littlewood Paley projection ant dyadic














































































































freguesia t and g 22 With a further reduation
such estimate in turn follows from the following
fixed frequency strichartt estimate

a P

091144 L 12
when P Littlewood Paley projention onto unit

freq encie I la 151 C 2 Finally an abstract duality
argument th Tt argument can be used to show that
the fixed frequency strichartt estimate follows fro
a dispersive estimate stated below

We remark that while this series of relations are
tethnical they follow know steps used in the aforementioned

series of results on low regularity for quasilinen wave

e f ations In particular I n Day 4 0 for thefixed frequency
estimate is a rescaled version obtained

from the reduction

t

t a e tint
a














































































































to the following dispersive estimate

up BY

print

Hp t d
iii it L'can

when
g 22 and we recall that 4 is a solution to

Egg 0

The funition d satisfies
lidlley s i ti e it has the

same integrability as ftp.t 7 The tern d is gunsilinea
in nature i.e even though we seek an estimate for a

solution to the lines wave equation 219 0 the

coefficient of the depend on the solution sire E G El
and hence need to be suitably controlled This control

than leads to the existent and integrability of d
We obscure that we have redand a Striche te














































































































estimate to pice t a decay estimate not for Pout for PBY that is because in the duality Tt argument
spatial derivations can be handled with an integration by parts
We are left with s tin derivative se way131The argument it
ematric in hat u so we are left with a time direction that
the true normal i.e vir t E t constant time hypesurfacewhich in our case is B

W finally note further v drition since we want
now an estimate at unit frequency we can via Bernstein's

inequality replace 11P B 411 by 11P B 411

Iain
the kits The use of L allows us to rely

n energy estimate fo wave equation

I
t

it i t
estimate fo the wave part to a decay estimate to
solution to Rey 0 At this point we can apply














































































































the machinery of mathematical Entwave equation which

briefly recall

Decay properties of solution to 49 0

a divetional dependent with derivative of 4
in directions tangent t th chaanteristies decay

differently fasten than derivative of 9 in direction

transversal
to the charaiteratia Tho we need to get

a hold on the characte ios of the operate De
which are the sound cons This is accomplished

by introducing an eikond or optical fruition which

is a solution to theihosalequat
IE I'll V94 0

with suitable initial conditions not that U
depends on E sinn G ECE so in particular the
g laity of U is tied to that of E the














































































































and cones are the the level sets Gu of U
We next introdun a hell v v t G franc

en en L L adapted to U L Btw I B p
where N is the unit outer nonah to the sphere

Stu t constant n U constant and leath is

an orthonormal
franc on Sta It follow that

G L L I GIL E GCL en GIL eat 0 and

GIL f I 2 This is of course re y mush like a similar
construction in Gn but using the acoustical metric recall
our big idea about the acoustic geometry being the relevant
geometry fo a fl it floc line of B

i














































































































To prove decay we follow the usual approach of
confronting a weighted energy called a co formal energy
because the method also involves a conformal resealing
see below and using ce tail multiplier with suitable
weighted sectorfields It turns out that we need to unt
different we tofields one whose

weights are good in an

interior region h t become weak in the exterior partand on whose weight behar the opposite way Fo the
i te io we take first for suitable f and for
the extern T L for suitable m Here

i f n

should he thought of as the quasilinear analogue ofthe radial coordinate in Ms the inti in estimate is
like a Morauta estimate adapted to the acoustic
geometry and produce integrated energy decay estimate
the exterior estimate is related to th re method ofD fermos Rodiniashi DR














































































































After testing the equation Day to all
multiplier fit Ny and in La and integrate by
parts we are left with with euro term

involving ON and DL Sinn N and L depend on

U which depend on E That is what we meant by
saying that the coefficient of Ge need to be
controled the quasi linen nature of the problem
is still with us even after all the red tin that
led us to the linea in y problem Rey o

The weighted energy contrat in the above
procedure is called a conformalenyy because for
reasons that we discus below in the end he consider

not 4.4 0 but Dey 0 who E is a metric

conformal t G














































































































Control of the acoustingeometry

T.es imate0tandolw decompose

than relative to the hull frame obtaining

IIncoefficiest of the hull frame whit wa

ane then tasked with estimate Ultimately this
is done by studying a delicate evolution elliptic
system satisfied by the connective coeffilienti the
n tru tuveequati.nl Thus the desired decay

estimate can only be obtained in conjunction with
appropriate estimate fo the convention coefficients It
is beyond our goal to discuss those estimates here We will
restrict to a few remarks that illustrate what is
different in our case in comparison to the case without

transport i e C R nonlinear waves

One hay connection coefficient that play an














































































































important role in the argument is the hill mean curvature

of the sound cones fu

try X C
Deatley

where E meth int set on St h by G D covariant

derivation of G Analitially try X is a spatial
combination of up to second order derivation of Uwith coeffine ti depending on p to firstorder derivativeof G to X satisfies the Raychaudhuri equation

trot Ru t
hid after a careful decomposition of the Ricci tensor reads

text E IL'Ll emqqe.pt
here I t L Ia f n ai de 04 is a contracted

Cartesian
Christoffel symbol of G wager text it IL

becars It does not have enough regularity to be a source This follow
fu the delicate statue of estimates which implies that we














































































































wall need to control a tangential derivation P of F X

tho we need to differentiate its evolution equation If we move fl
o the Ritt the Ltr LI t LA text XLI o

toomany divination Thot tret th i the good variable to
consider Recalling the equation satisfied by E EEE
covert and using de G E EEE Sha G C 41

L C E X t Tal e aver

This to control try t t t we need to control curls
at consistent regularity level The presence of curls
t tiaeamree.tt naf
teraition between the wave at transport part i.es
spoutoauiablenterinyasiooFevnsi theestimate for the aco sti geometry This is a

titties
in the absence

of vorticity involve controlling its
by tangent derivative along the sound cones i e














































































































titre Atal E L Gu and other spaces along Gu
as well b t we do not discus then here when J
denote derivative tangent to Gu thus we need tocontr

Fauver i ctfu At first sight this seems

hopeless because curls satisfies a transport efuation
and there is no reason to expect estimate for
transport equations to hold along cones In our case

however we can estimate found r E L2 as

follows Energy estimates for transport equation give
control of Ja hw in L la D thing

I I dare ri B
w find

D J e Darla B Younts t

We now integrate this in the region interior t Gu
and apply the diverge theoven














































































































I I Jarle Darren It I D J
I interior tobut I interior tobut

f Git u t f C J B t data

Cu at
where U is a suitably constructed null vector w v t El
normal to Eu that allows to apply the divergence

theorem with a null boundary and all integral are with

respect to suitable geometrically induced volume elements

Iron the construitionof Van l C B B 1 it some C V Bl 1 so

C Jr HaventÉÉv 10avent Thr

flyover E f f parte B tourer

Gu
0
It

1 interior toGul
t IG J B

at














































































































Using again C 113,131 1 the second integral
on hits is simply Poulett Usg equation 4 we

find stale d't Tha

fl Ocurent E f I dare ni
En Li

t It I 1 torrent to 1

t
l interior tobut

The first ten o Ritt is controlled from the energy estimate
a de iced earlier as it is the second term on the RH

after applying the Cauchy Shuart inequality Of course
the

energy estimate depend on the mixed spacetime norms

we ane ultimately trying to control b t recall that i the
argument everything is organized in a consistent bootstrap

Thi we obtain the desired control

dourer E L Gu














































































































We make the following two crucial observations

The argument relies fundamentally on G But 1

which is only true because D is everywhere transversal

Tansversility Elbert could change sifter andii

Cu
t.th.no gnw.wattoa.tf
ConTofthi tifspaatiniintegral of

i

i

i
i

In particular the above highlight that if wehad a gene in device lie of A as a source tannin

Iefatiafortatthaugunentwouldnotade














































































































Geneva derivatives of s cannot be estimated along
cone because they refine the Hodge estimates

previously
employed what cannot be implemented along cones This
is a feature that repeats throughout the estimate for

transport variable that appear as

iiicnn.tinotdenratiee.my 1
t

t

on e t on the aforementioned coformal
change When using multiplier in Egg 0 to estimate 4
we obtain a t t term It is however trot til
that we can control as seen Thus we cento maly change
c t E with the property that t I t Xt ti
D t this new

requires a t thing the conformal facto ofthe change This is done with the help of a
modified

man aspe t fruition














































































































tf it I ytntuapotra iase
already discussed on important alpert namely control along
sound conel

Boul for or in co att can be obtained as follows

First we estallish a dir a ul estimate in Hilde space

Or
copy I disrheas t ha ha

go
t L o t

jn.ved

gchip

For cover we use that it satisfies the transport equation
I To use this equation w de ive an energy estimate for

transport equation in Hilder spaces that real

Harrer
go

I cult
coin

t

coition
d














































































































This estimate is proven by integrating along the charaiterista

of the transport operator i.e the flow lines B and o
raving

ratios at nearby points In particular it requires comparing
nearby points at tin t with their initial position along the

iii

y

t
because with our vegularity assumptions we have control over the

y
o

Thi estimate will now close provided we can control th Hilde
hor of 04 Move premiely because we need to control only on

L'tcf it suffice to control 1104 aegis which is controlled

y the bootstrap assumption














































































































We also venal that control of the acoustic geometry
also involves estimate on the sphere Stu Because of ou tuitional
framework this eventually lead to Holder estimates f geometric

quantities on the spheres There are obtained by transport along
integral curves of L whit tha need to becontrolled

resembling
what we did above for the integral cure of B I

Th prerio thorin is for the classical compressible
E le system What abt the relativists can that concerns
her The equation are significant now complicated However

Sifan Y was able to generalize the above tehuige to the
relations in setting

A similar low regularity reset
aint t all fo that hintEuler equation

Kf See Cy We strain that this result shall
not be taken for granted Due to the increased complexity
of the relativists epation then is no reason to believe














































































































that reset from the classical setting will generalite
to the relation tin case This is esperially the casefo a result involving many delicate estimate a
the on we just presented

D

Rach The presence of hull forms is not importantforthese low neg la ity results although it is hay that they are
quadratic other spatial structure of the equations are as seen

crucial became of the application of L L estimate
that produce the mixed spacetime norm that can
be controlled with strichartt estimate and ou

methods

thestudyofshochf.at
Roughly a shave or shootfo short is a

singularity o lol ton to a PDE where the solution remains

ounded but one of its derivatives blows up while it is














































































































known that solution to the relativistic Euler equations can
breakdown finite time less forsmooth initial data we

want to understand the nature of the sing larity This
we want to disown the problemof constructive

in more than one spatial dimensio
henceforth referred to

it i isimplyastheproblemofshochformation
by which we mean

Shocks form for an open set B of small initial data

D contains arbitrary initial data i.e notrestricted
to a symmetry class

Proofs are constructive so that we canget a precisedescription of the shockprofile Neededfor continuing thesolution
past the shock in a weak sense

The framework needed to establish proof of shock
formation involves the following ingredients

Ingredient one nonlinear geometricoptics This is don
by introducingationalfunctionUwhichiasolution to
the eihonal equation

Gdr J U OpU 0














































































































with appropriate initial condition The eihonal function play
two crucial roles

First the level sets of U are the characteristics
associated with the metric G which ane the soundcones
Is this regard we note that U is adapted to the wavepart
of the system and not to the transport part This choice is
based on the fact that the transport part corresponds to
the evolution of the vorticity and entropy and there are
no known blowup results for these quantities On the other
hand the only known mechanism of blow up forrelativistic

othe typesof singularities has been recently constructed but their
stability in unknown Mars In particular this shows

iiiiiiiiiiiiii.isthe importance in the contextofstock formation of not
treating the transport and sound part of the system together

The intersection of the sound cones is measuredby the
inflation density y defined as

g Fatou














































































































which has the property that y 70 corresponds to
the intersection of the characteristics

Second in order to detect the blow up we need to
identify precisely in which directionis the solition blowsup
and which direction it remains bounded This is done withthe
introduction of a null frame

es es L L

adapted to the sound comes Here L and I are null vectors

with respect to G satisfying Elk L 2 and

Lene is an orthonormal with respect to G frame on

the topological spheresgives by the intersection

t constant A U constant

We also have that Glen L 0 Glen L A 1,2

ft u
constant

Y
I














































































































We can decompose quantities w.at this null frameI identify that blow up occurs in the L direction whilederivative of the fluid variables in the other direction remainbounded To carry out the analysis we also introduce a geometric
systemof coordinates adapted to the soul characteristic

t U o oat
where VA Ai 1,2 a a coordinate o the sphere t constant A
U constant they are constructed upon solving
C df 9,49 VA 0 with appropriate initial conditions

Ingredient two nonlinear null structure The basic
philosophy for the proof of shockformation is to show
that relativetothegeonetcoordinate It U vi oil
the s.lu remaiballwayttw In thisway
we transform the problem of shool formation into a more

traditional one where the goal is to derive long time estimates
for the solution relative to the geometric coordinates The
blow up of the solution a r t the original coordinates is
removed by showing that the geometric coordinate system














































































































coordinates since the characteristics are intersecting at the
shock we expect the geometric coordinates to degenerate there

A crucial aspect of these constructions is that thenull frame and thegeometric coordinates depend on thefluid
i

i i

coordinatesconstructed out of U which depends on G
in broad philosophical terms this resembles the approach

on the solution i.e on the spacetime metric Therefore in order

to implement these ideas we have to show that thegeometric
coordinates remain regular all way up to the shocks Ail to
do so we need to obtain precise estimates for thefluidvariables showing in particular that the derivatives tangent
to the sound con do not produce singularities the latter
co ing from derivatives is the f direction as mentioned
One important big idea here in the following
we show that theerolution can be decomposed
into a Riccati type tern thatdrives the blowup
lrecallthatthekicaatiobeisdf.tt wh














































































































blows up is finite time and error terms that do not
significantly alter the

i iiathsinita statements holdfor us Expanding thecovariant

equation for I reads schematically
LC Lil Lil t Q

where Q denotes linear combinations of null forms relative
to G and we omit harmless terms e.g terms linear in
derivatives The equation Lt e 1512 is the

Riccati equationfor the variable It since L is

differentiationin the direction of L this L In for a suitable
parametrization of the flow lines of L thus we need

t.iitit.si ii This is problematic
Howeverianthereiswheretheroleofullfounti

i














































































































109,041 719104 214109
where I is differentiation tangent to the sound cones

iiii i i
involves terms quadratic in the direction the system want to

Little Kil Trini
so that the first term on the kits is the only ten

quadratic in It If usted of Teil we had 05
then we wouldget a di term After decomposing in a
null frame this 051 could produce a Lt that cancel
or nearly cancel the lil term from the Riccati
part thus working against the blow up and preventing us
from proving that shocksform The term Ici di on theother hand is at most linear is It so that

ki Lil't Teil LISince the tangential derivatives remain bounded the first ternon the Pits dominate over the last term leading to theblow up of It














































































































Remark A straw man ODE analogyof the above isthe followingconsiden the two following perturbationsofthe Ricacti ODE It Eh tf t te z 41 221923 210170
e 0 small Thefirst equation still blows up and it does it atthe same rate as the original one For the second perturbation

dependingon the sign I the solution will either existfor all time onit will blow up at an entirely different rate thus effectively
altering the blowup the nullform are the PDE analogof
the ey perturbation

IngredientHreeienergyestinatesantregularif
The

previous arguments assumes that we can in fact close estimate
establishing several elements needed in the above discussion

e.gthat tangential derivative do in fact remain bounded Thus
we need to derive estimate not onlyfor thefluidvariables butalso for the eihonal function sincethe regularityof the nullframeis tied to thatof U

Energy estimatesfor thefluid variables are obtainedby commuting the equation with derivatives but in order toavoid generating uncontrollable source terms we need to














































































































commute the equations with certain vectorfield that are adaptedto the sound characteristics This leads to vectorfieldsof the form Z n du 0 Commuting through eg the equationfor I i
2 Dgb n Dgth t

Dg94Th

Dg th t 934.91
so the etuationfor I five

Dg Et n O U Oi t

Since U solves a fully non linear transport equation
standard regularity theory for transport equation give thatN is only as regular as the coefficients of the equationwhich in this case is C and since C C I s nd wefind03U 2 G O I t On the other hand standard

energyestimates fon wave equations give that from Dgc2til we obtaincontrol of 9124 n 02h so in the end we are tryingto control 92T in termsof O Ts and tho have a

derivative loss














































































































It turns out that we can overcome the regularityloss by exploiting some delicate tonsorial properties of
the eihonal equation and of the wave equation relative to
geometric coordinates Together these properties can be used
to show that certain geometric tensors constructed out of

i i ii ii
sound cones Carefully accounting for the precise structure

is precisely one of such terms cith extra regularity
It turns out that all term that seen to exhibit lossof
regularity are of this form and can thus be controled

Remark The special structures mentioned a above that
are use prevent lossof regularity of the eikonal functionare tied to the geometry of the sound cones The improvedestimates without

regularity loss for U are not based directatlyon the eihonal equation but rather on evolution equation forgeometricquantities i e the hell str cturn equation we saw before

To close the estimates we also need to use the
Xtra regularity that we obtained for s and I to closethe estimates To see this let us do a naive derivative
counting From the equationfor a we have

Ig n n C














































































































so we can control du E C But cavort i now From
the transport equationfor it uld I du we can control
I n du so is the end we are controlling du t d n which
has a lossof a derivative This lossof regularity can

be avoided however by using the extra regularity
for I mentioned earlier Something similar happens with
some estimates involving s

Finally we mentioned that the energy estimate

i tiiweight is given by the inverse foliationdensity1 Since

singular at top order This is a major technical
point that involve a complex bootstrap argument toclose the estimates

The above ingredients seem to be needed to establish
proofsof shockformation and are used in all known such proof Cin
22 see below The crucial point for us here is that allsuch

thithettiE














































































































Senecatextfonthewerhash
The ingredients outlined above have not all been

introduced in DS They are the culminationof a seriesof
beautiful idea developed by a series of authors For the
sake of time we will not review this history here but we
refer to the introduction of CDs

Assail the fluid is inrotational the new equations reduce
significantly and agree with those found by Christodoulou Cch
The inclusion of vorticity causes several new dificulfies and it
is quite remarkable that the vorticity case present

many ofthe good structure found and needed in the inrotational case

Finally we mention that in one spatial dimension the
picture is compellingly simpler in 11 we can rely essentially
on the method of characteristics While this is essentially the
same as introducing an eilosal functional is Id we can dispense
with all the geometric machinery discussed above Also wedo not need to carry out energy estimates Instead oneuses estimate i Bu bounded variation spaces It is possiblto prove that such Br estimate do not generalize to twoon more spatial dimensions Ra














































































































The relativistic E ler equation with a physical

Consider fluid within a domain that is notfixed s t
move with the ft it motion

t 0

Fluid of this type are called fiee bo.la its

Examples i elude a liquid drop on now relevantfor th
relativistic case a star

Denoting by N the region occupied by fluidatfine t the dynamite of the fluid is defined in the spacetin
region

fit U that
octet

for some T 0 known as the movingduma.is














































































































nt

EE

fixed donais moving domain

The fluid'sfboundan a ha moving bondary free
interface is

I U Ith
Offer It I it dry

Not that s has to be determined alongside the

fl it notion i.e it cannot be freely prescribed a priori

The fuse boundary relativistic Erler equations are

the relativists Erler ef ation defined on a moving lanai
I In this case we have to impose additionally
the boundary condition














































































































I O U E TS
where TI is the tangent bundle of I The firstcondition cony from physics and say that the pressure he

to vanish in the fluid rain inteface alternatively
we could have p constant if the moving fluid is immersed

in fitel medium e.g a liquid turn in ai The second

condition say that I in a tweeted by the fluid
i e If more with speed equal to that of the normal
component of the fl it velocity on the boundary

Let assume from now on that we have a baretopic
equati of state papist Then

pl o condition for fl
There are two distinit case to consider

Liquid 52 constant o o d

i f I 0 oh I

In both cases pl o The liquid and gas cases
whose name are men o less self explanatory are very














































































































different problems A key difference is that the equations
degenerate on the boundary in thegas case since mtg1 01
but not in the liquid case since pts l to Here we will
consider the can of a gal in whish can I is also known

i a vacuumboundary In the gas case It is given by

N x E N I sit n o

other topologies the in can be considered In thegas
case we also impose

oil 0

which is related to the fait that sound wave cannot propagatein vacuum

Remark The condition of e to impliesthat the soul cones
dogenerattoth

flow line on the boundary Then this problem not
only has multiple charaiteristian it has repeated characteristics

A standard equation of state in the study of a gaswith a free bouday is

pig ght h o

which we henceforth adopt














































































































It turn o t that the day rateof ashesIt plays a crucial role in this problem To see it
let u ass me that hea It as decay a power of
the distant to the boundary

ai e de detent list ix et
This assumption is natural because d is a natural scale t
consider since away for the boundary we essentially have
the standard Ina f ee boundary relation ti Euler equation in
lightof finite propagation speed Alternatively we can
consider a Taylor expansion hear It with coordinates such that
X ed Then the fluid's ancelevation

is

a aroma II Er I0111

in
l

shes rdf














































































































Thi
o if p o

I first if p i

n if pal

The first and third condition are not physical zero

boundary acceleration no it not allow the fluid to rotatea stay dot We henceforth assume that of is comparable

to the distance to the boundary i e

a text I dust it ett fo t hear It
a condition known as the

physicalvacuunboundaryandit
This condition should be viewed as a constraint i e a

condition imposed on the initial date that is propagated
bythe flow In this setting the free boundary relativistic E le equations

boundary
t

Ig.IE jIit itiiit y
tm

plies that linear wares with speed c reach the boundary














































































































fi it tiny The the motion of the boundary is

strongly coupled with the bulk evolution and cannot be
viewed as a self contained evolution at leading order

Our general strategy to study the problem will be

A choice of good no linen variables that diagonalize
the equation v v t the material derivative

Dt d t
Y s

We want to diagonalize the equation in part because we

want to apply an Euler method to obtain solution s
hi want It lit I 0 hits We will see later what
Dt in the

right mentotied to consider
A chain of good linen variables the analysis ofthe linen ited equation play a key role in our approach
Devin

energy estimate for Dittgood no linearby showing it satisfies the linearized equation with good penturbatioeons Use ellipti estimate to control full derivation
We us a regularization t time discretizationto obtain solutions














































































































Assumption we will henceforth assume that gthe Minkowski netrin This is not an oversimplication

all feature of the pollen are al eady present in

Minkowski space coupling to Einstein on the other hand
is a mush harder problem

mention.atwill be chosen In view of the constraint o o f
it suffices to consider the evolution of o Using

the relativist E he equations we find

fungo t ai girls tf tf pts t.ci uiurgs 0

Dt good o dt ha of
foot Theft bat

kill this fern

fist er s














































































































he
resulting furtio f is not unfamiliar Recall

hat we defined the vorticity a

s d hit h
by

In the absent of a baryon density h which

we are
considering her l we can alternatively define

A d fu do

Thus the chain off that hill the bat
term is the same that is used to define the
vortility One can derive the following evolution

or frap t daily top of a 0

which in particular implies that n o if so initially
Because we will only co side the evolution of the
spatial part ol we also look fo an evolution














































































































solving Rij The following ideity can be sevified
wirra 0

We can use it to solve fo Sei in tens of
the spatial component Riji

doj I Vij
Using this into the abro evolution equation
DtWi t I 0,0kWh t t djohwih I did ohwhy

M
t to or

why 20

which is the evolution equation for the vorticitywe will employ

Rech Above and thusghost a consider only the spatial
component oi at primary variables for 0 so 00 a way nian
00 ftp.rirf In particular when referring to o
we will alway hear 101,02 31

tch All the estimate we will discuss need to be














































































































complemented by estimate for the sortility These estimates are
obtained by direst estimate using the above evolution equationFor simplinity we will omit her such vorticity estimates
Our choice of f all diagonalite the energy equation
aristate sit

go.is 0ii ag.foio s 0I
a i i The above it for a general equation

of state Fo rise sht we find fig it eh th
Since af is an important quantity it isconvenient to take it as

primary variable insteadof f So we define vi bygh white is the sound

speed up to a constant factor In terms of tail oihi relativistic Erle equation read

Dpr t r f s d o t ra ridin 0

Dtv t as dir 0

when G i an inverse Riemannian metric
give by

lo is 10 e














































































































elated to the acoustical met in not that C i oil lg is a

divergence operator no ai and a are smooth fruition of
rio that an 0cal hea It and 9 70

ftp s sans w the linearized aviate
assoriated with r and s rapentirely We will see that
the linearized equations admit the following energy

his will rt s t t r E i win
92

Nt
which can be thought a a weighted L noun We will
see below why such weight au needed b t the reader can expect
this to be needed since al said the equation an degenerate

while eventually we want r to be a solution tothe equation fo this definition it suffice t tch u

to be a defining fusition fo It i.e at r o

and r e dis t l It














































































































Next we want to define high order spaces
A hint of how to do so can be taken from the

underlying wave evolution which at leading order is
governed by the wave operator DI r D This

suggests building higher order space based on powers of
r D in the underlying weighted L space It We set

his will E I il n't't o's y
191 0 9 0 at

ki a th

E E un tht o him
191 0 9 0

ki a th

To better understand this definition look at toporder

Sailly 11 n tho 11

camp
u tetto

let

little is
willy

This definition can be extended to non integer 120 by interpolation














































































































t.fiiII.nantmtutmmat
10 t rid rt nd't'd o t void r o

19ft 50,10 t dir 0

As we will se later the term roidir can be

treated essentially as a perturbation This a

consequence of the fait that it with the right u
but s

requires one less power of r in or
energiesas compared to W Thu we drop it for now obtaining

10 t rid rt nd't'd o so

19ft 50,10 t dir 0

which heuristically w expert captures the leadingorder dynamic near the boundary These equation
admit the scaling symmetry

retire octal ti t rat txt I'ollt t'd














































































































From this we determine the critical space 7ft
21 3 t t t t
y g g

Remark The full equation do not have a calling
symmettwhenewer

talking abut scaling we mean the
scaling symmetry of the above leading order equation

W next need to define some time dependentcontrolnorms that will serve at control norms Set

t 11011A 11 Or
Lacey C 2cal

CA is a seal invariant wine when C't i th Hitler
semi horn and N is a re tofield construsted as follows
In each sufficiently small neighborhoodof the boundary we

can contrat N such that Neto Dutta for some fixed t.EE














































































































The point of introducing N i that we can

make A small by localization whereas hurt it

scale invariant tho cannot be made small by localizationor scaling argument We also introduce

B A t 11
Valley t 110011

Itt Flett
where

anti t.tn tiiitiIyx y
we can think of lounging g roughly the C

Hilder semi horn but it is a bit weaker as it
uses only one derivative away from the boundary

The norms A and B are assoriated will th
space Hal and 7th in view of the embeddings

A f Il's willy he 21 7 21

B E Sini
lyse 21721 ti














































































































i i
m

jitts

Consider.pt
Dtr t r le is l o t aroid r 0

INDfo t 92 dir 0

above
Define the stat space

IH final line EH
Than equations k are locally well posed in 41 fo data

18,31 E 1H provided that

Elvin diet x fol no i o

and

21 7 21 ti 21 I 3 t t t t
h

Reds
Local will posadness above is meant in the usual

Hadamard sense existence and uniqueness of solutions tho E
c cont M I for some Tyo and continuo i dependent














































































































of the solution on the initial data in the Itt topology

We have not dfinal the relevant topology in Hill and will
not do so here see DIT for details

Obscure that a obtain local wall pas dues fo dataonly half derivation above scaling

To the best of ou knowledge this is thefirst local existentand unique as result
for the relativist Euler equation with a

physical vacuum boundary in men then on dimension spatialdimension
in one spatial dimension Oliynyh de established local existasand

unique's In this setting however the boundary is just
point and the main difficulties are absent A pro i estimatehad previously been obtained by Hatti Shholler speech Hss
a I Ja

g Left it Maimoudi JL M In the case when the boundarycannot actelecat shedf psi the problem was treated in Rat

It is possible to transform the moving domain or in
a fixed domain Cont xd sic a solution dependent map
2 cont x do I This has the advantage offixing domain
but introduce new nonlinearities In this approach we

saythat the equation are written in Laguangiancoordinate
The a priori estimate CJ LM Hss au done in














































































































Lagrangian coordinates Our approach in contrast deal with
the equations in the

moving domain I in which case
we say that the equation are written in Euleriancourdinate

W next investigate the gestion of continuation ofsolution

IIIfui tataun.co For can integer 120
there exists an

energy functional E'd E'll riot with
the following properties

al Coercivity as long as A remain bounded

E I l Fae
b Energy estimate hold for solution to w

I E s Billy ill
72h

As a
consequence of this theorem Griswall's inequalityive

11 r r y
ane f

est cries














































































































nah We contort the energies Edl explicitly only

inequality also holds for no integer 1 o

iii
iiiiiThe previous theorem and the above remark lead to

obtained above can be continued as long as A remain
bounded and B E L s

We will now discuss on important aspectof the proofs
handy the energy estimates Reader are referred to EDIT
for full details In devising these estimates we will rely on the
following Due to finite propagion speed we can localize the
problem Away from the boundary r 2constant so and stands L
estimate are readily available Therefore we will implicitly
assume throughout that we are no king in a neighborhood

of the boundary In particular we can assume that
v in small














































































































ititiitian
Dy s t tell i'diva t r te't din t ra wid s f
Dt wi t a dis hi

where f ant h an of the form

f S s tr W w he Sas t Wu
where f and h an linear in Ohio with coeffilient
that are smooth function of not These will be
error terms We make thefollowing observations

The linearized system does not require boundary
boundary condition This is related to the fact thatthe one par mater family of solutions used to produce
the linearization are not required to have the same
domain Alternatively we can think that the
boundary conditions are included in our choice














































































































of weight for one fruition spaces

The tern
the diva come from the

linearization of Dy We obtain prenisely a tern
in E when

computing the linearization

The faun th k s'd raj does not contain
derivation of es ul so at first sight it look
like an error tern that shall be moved to the
Rit We will soon see that this teen is not
lower order with repent to our energie a it does

not contain the right weight
To devise control of 4 enaugiest we will

use the
moving domain

formula

E t f Dat tf fit
rt rt rt

which holds turn because I ht is the actual














































































































physical thru velotity of the fluid particles on the
boundary This is one motivation f this choice ofmaterial derivative

In order to gain intuition let us consider
the case 4 1

Dy s t E i diva t r te't din t ra wid s f
Dt wi t a dis hi

and let us try to hound the standard d energy

Est If sat in

Nt
retipling the first equation by s the second byt.ws
integrate over It and use the moving domain formula

I I s t I lui t f r te't't's dim t fair soil s
Mt Mt Mt

Jags
t 142














































































































Above the term coming from ra rigs was handled with
integration by part

r said s Jairo'd s

I I
la roils

ht
when there is no boundary tern bears t o o f

We need the c is ti a in ow and I to cancel

after integration by parts but clearly this cannot be
case because of the coefficient re t This is easily
fixed by multiplying the second equation by KE w

but this
requires modifing the energy

tf y't I
r e'living t fr ie't't's din tu El's wadis

Fyi at

we can combine the last two integral and then
integrateby part

r te't is din tu El's wadis f ret to wis
rt

t














































































































f or E it w s

fro
IE t

ups
At

whin there is no boundary term because r o o

the boundary The second integral is good because

Cauchy Schwarz gives

I di E t
up I ar all

L'in L'can

h.vn ytw part of
the enegy since Egil't d's

The first integral however is bad because it lack
a weight i e

wacannotbound

finials I grin t g s
Nt It

since dir Idell on the bit but rye near f or

the Rit














































































































The problem is the tern E i dinw s coming

f on the linearization of D that we prematurely

moved to the kits a firm that itself is not
bounded by the energy because it lacks a weight r

If however we keep this term on the Litt the

I t t.ua t f e's's drugs
energh At

r te't't's din tu le i widis
At

We now see that the bat torn f or E jugs
at

coming from the integration by part exactlycand
with the tern coming from the linearization of by
f is particular suit tern is not lower order al said

Because our energy now has a weight there














































































































an two further things we need to check First that
the error terns on the hits written as can indeed

be bounded by the energy This is the case because

the fern f in the fist linearized equation is noted
linear in s and a b t also in s and ru h in

theseco.deuatioailinea isatwoly but the
second

equation itself gets multiplied by r

Second we need to be more careful with the
moving domain fo mule to make sure we donot pick
ten where the weight is differentiated producing ten
or 0111 Going back to the derivation the relevant
term is

grey'swidth I fye
d
Dylanrt

If Drive win l
ffyby.tt wir f Dprk win

t
t

ftp.frkyiiwig I fuk in del
At














































































































I Dyk win 1 Dirk's air

t

where in the last step we used the moving formula
The fist tan is the fine derivation of the energy
the second and third terns are good because they

have the weight r The last tern look problematic
though If we had a

gene in derivative of r in this

in trouble a we would be
missing a weight However

i

Dpr r k s d o ra rid r e ud ye

to gain back a power of r so the corresponding
integral is good

We can now go back to the general case htt Theargument
i very similar to above But how the tern coming














































































































from the linearization of Dt has a th factor So
in order to get an exalt cancellation we multiply the
equation by r s and I n't t e Jai yielding

92

I n't Eiji air vis t ut E i
die s t ute'lituidis

Oil r th e i air vis t o
th
E i

die s t ute'lituidis
e y't o u tho s

which can be integrated by parts We see that
in the end we control the energy litsially
al said

We have on now comment to make about the
linearization of Dp we said it produce the tern
I jioiru this is true but only after some

intentional algebra Lineaviting the te n

Ion and

using that o

tff t
tin














































































































d I it 0 in t

It dir E
so dirt It in

Yoas
o o u

Dut

n iiiiiiiiti.in
so

d I it ji ri su in t

I Sii
Igi sus dirE u

attire
that it ri noir

t t Sii
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this visit ta 11th 1 o
Igi

The tern in bracketgives using

a i

city t h

I ith t ta it Ita

ii L t ti h

L
and therefore the entire tern co taisig the
braihet is linear in ru and can therefor b
absorbed into f

Although the ahem a jument are simple they
capture the following bigideaiitisheyt.fi














































































































tI ti ii
a lines it l with good structure for which we can

devise an energy estimate This good structure is manifest

ti i ti tiii t
thacoefficientaohasthenightfornfo

timisitifim

t.it n.ti
the following important idea that will be usefulfor
the derivation of higher order estimates differentiating

i i iten when the derivative follow on the weights A














































































































weighted structure of the equation Differentiating

Fhouinetcreatithi problenbecauser
theequctionfo rgiecidpi.sefoithtaru baoh

Energyestinateforsolutio

The shore discussion suggest that in e de t
derive energy estimate fo the equation

Dtr t r le is l o t aroid r 0

Dfo t 92 dir 0

we call take several material derivative of the equations DE
a I show that the top order te ni Dtr Dirt satisfy the
ineavitel equation with good perturbative terns However this is
It the case the important cancellation tern fo the
incarized equation comes from the fat that a regular derivative
does not count with Dt whereas if we differentiate














































































































the equation will Dy well D com ate with itself
Ou approach is then to introduce the

requiredcancellation fern by hand upon defining the following
good linear variables

so v

Wo i a

si of
a go

i t

ayy't
gr

up DI o Y 22

Sir Dir
wife

E Dt s in

Note that only s is modified from Dpt be a n only the linearized
equation for s need the cancelation tern I
The reason the definition change fo small N

that our estimate are based on a hierarchy that
ultimately need to connect with estimate for Cho
themselves We also remark that the connection term

hiify Dt s air














































































































could be replaced with t e
i dinDt to kid

is more alih what we have in the linearized equation

since the different between both is perturbative as
it comes with a good power of r This is precisely the
computation we did above using the explicit formof a Ou choice here however is more convenient
because it is th ter I

hotly
s what appear

in the comm tater Dy d This again can be vicued

fro the above computation fo the linearized equation

To understand o r chain not that

Dish it r

wife
E Dtr in t

DY t r te't's's o he info dirt
usingequation f u r and above observation














































































































r k t'd Dio so't't'Dtu dir
in a

KitTh wit

Dts tuk o hit t the i divert

Tented
equation fo

Indeed we can show that the good lines variable
satisfy the linearized equation Litt sons teens

Dysart E dirtant t u k i detail

t ra rid say fan
Dylan l t artisan Karl

We construct our hierarthy based on 210 because we will
use the underlying wave cool to which is governedby a
second order operator Di r D and is ultimately
consented with our function space 7th based on an














































































































even number of derivatives
Remark Although it is not the case that saw D

to gain intuition it is often helpful to think so and we willdo so to construit some heuristics
Our goal is to show that the source tern

fan ha are perturbative i.e can be bounded

by the appropriate
energy noun we introduce below

and which are the energy for the linearized equation
applied t I say rant

In order to analyze the source term we need an

efficient way of analyzing multilinear expression in u ohhoho

with Olli coeffilient that arise in there expression Band
on the scaling identified above

Initial octant t 2ulit text I ol t till
introduce the following bookkeeping scheme based on th ord
f multilinear expression defined as follow

v and r have order l and la respectively we only














































































































I I
count r having o de is if it is differentiated
Undifferentiated w ha order 0

Dy and di hare o din Il and I respectively
G no a and a and min generally shoots

friation of the not vanishing at r o have order 0

Thi o dir is defined in tern of the order of the
leading tern in a Taylor expansion about r o beingorder 0 it the tern is constant

o

The order of a multilinear expression is definedas the sun of the order of it factor
with these conventions all term in the r equation

have order I except the last one that has order I
and all term in the o equation have order 112
Upon successive differentiation of any multilinear expressiona v t I

y ou d all te m produce the san highest order
males some then derivatives apply to coeffiniets in

whirl case owe order tern are prodried














































































































The basin idea is that terms of high order in
our scheme are the dangerous ones This is because

suit tern an the one with more derivative and like
in unweighted estimate the tern with men derivative
au the one we have to carry a bot Unlike unweighted
estimates however it is not the number of derivative
per se that matter but the deficit balann of
derivatives and weight e.g a tern that is not
tip order in the number of derivative but has
no weight typically cannot be controlled Mo a

derivative
require more weights the powers of

are good and decrease the o der of an expression
We also not that a Dp derivative is better than
a d derivative because sel

ing for Dierof is the
equation give pouty of r bath whirl is not the care
fo d h has lower anti then o beca se it require our
less weight than o in 7th














































































































The other i gradient we need to analyte multilinear
tpression au some powerful interpolation theoven prove is IT

I we have

Hr's di
fly I lure f y

o

Il urn on 110
Po rn

I f Pj Pm to Oi Im tp fi t91 rit roll Oji tho

m rm 11 r
ri t

p
O Cj Cm

ru Tm E IR

Arri rifle j Ii no 11

Oi I I I g r Rudi n ra 4 o o Lj em
om L

lurid
file I ft ur o hla

Oj 2j 1
In

i t Tj rudi m t om f o o cjc a

rm t














































































































Nuri d flip I 11111
E f

0 s

z
i t Tj Cmd Ili oil m t rm 4 o

o c em on

3 is the span dimension

proof It

We are now ready for the energy estimates Define
Edl Eth Ir ol I 152 Wsj

j 0

We remark that the energy needs an additional tern
involving an analogue of the good linear variable for thso tility but a said we will not discuss the vorticityestimates

Infinity E in Mae

foot we begin with the E part














































































































Using the equation to successively solve for
Dyer rt we obtain that I she Wael is a linear combination
of m ft linen expression in r or or with zero order coefficient
It is useful to record her the stature of the
lines in derivative top o de term obtained by solvingfor Die riot

1 I v e r o v f ult ohh i right
de t t t th it t l I I I e l

1 I r e rel r f re oh i ul d s

order l t i le t t t th y a e t

I i dentally the suggest

I Di thrill T 111401
721

which basically what we want although as seen we

cannot work dive thy with Pt trial because they














































































































do not solve the linerized equation with good
perturbative terns we have to introduce thegood
lines variable

So again we consider using the equation to
recessively solve for Dyer ol We begin with the
top a v t our orders terns so we ignore the term

coming from a visit or from derivative following
on the zero o de coeffilients we also considerfirstthe case that when we commute D with d all derivative

fall on o and not on u via o Tha the
corresponding multilinear expression the and wae have the
following properties

They have order l l l la respentively

They have exaltly he derivative

They contain at most htt l faiton of r

vepritively














































































































Io Sae thus we find multilinear expression
of the torn

ra d's r f ohio
j 1 1

where hi hi I

I hit 2in 21

a t T t t et 1

when J 20 or 4 0 the
corresponding prod it is absent

With a bit of algebra we can show that these
constraint imply that we can choose by and c not that

of b
j th f o ai hi t let s

a I bi t Zi Ci

with these choices we can verify that the
interpolation theorem apply to yield














































































































urbidhiull
Lie t I A nearing

I

n voi d ok
Pi wtf A Ii lie of

7
he

he

I i

ti I hi la si

lift
Pch f if h

Obscure that the numerator in
p Ig correspond to the

dens of the expression being estimated and all t l l
I needed This gives the desired estimatefo the top
u der terms considered The remaining tern i Sae
au analyzed similar ly In tent they are easier as
they have lower order ti e more favorable factors of ul
A similar analysis can be done for one This conclude
the f part














































































































You an mine to the 2 part Applying
Dy t th efatia satisfied by Kaj wait leads to

Sa I L saj L t Fa
wa I L wa s t Haj

whe a

L s a u d s t their s

Kaul a k rt d looping t th pro ay
To understand the origin and significance of the operatorL and La we observe that the wave equations obtained by
differentiating the crim equation an

Dj r Lir

Div Lar

Ea lie we wrote Di ra for the wave operation but that
is only a crude approximation The exit expression is with














































































































the

high

operators Taking D t

1 ith r L D rt

it

I

52

Ditto L

I
t

hit

t

which explain the alow relation We call the operate
L ait la send order t transition operators as they relate
the variable at level 2 with their counterpart atlevel 25 2 in our hierarchy Therefore we need to understand
the properties of L and La we will show that they satisfy
the following allipti estimate

ya fat I his
yo i t yay

all
y fat I ha

yo t
4 th














































































































whin It i the weighted Sob ler space with horn

flips 41 f I
Using weighted embeddings it follow that 7 J is equivalent
to Hai ti

Adi t t not that their non

a the sun at top outer but it is more convenient forthe elliptic estimate to work in H
r

Ich A stated the atra estimate for La is wrong
Observe that L only control the divergence part of w al

Law IG Pt d roping l r d f 77pay To bound

w we need to also control it cure part and fo that we
need the wortility estimate that we are not discussing

Let us aside the estimate fo 1 We first note thatintegration by part is the usual ellipti fashion yields thweshiv bored

Ha tut I his
yo it As It t t














































































































Thus it suffices to prove

Hi t t his
yo t t t s

e g
Compute

f r't d s L s f r disk ia r did s t to.ro s
If It bitpart

fut o dis 4 i dis ar f I dive sky i'a is
it Tegan ÉiÉ.mtat
fathersdilate's is tfytgegiiayo.no

there is no boundary term because Vio on the boundary

Integrating d by parts in the first integral

I n't d r ask i d so s f tr d la i io

t it

f r th o so la jig ops
11














































































































again there is no bondary tern Recall now that
we can work e a neighborhood of t E dry where

Drexel Y so I Or N I I A cat We can
arrange

the coo din ta such that t e 10,911 In this case
d I constant 0 We can further assume that
r f e fo small e o so n'th e r Oca
The recall an o

f r't 9s his 2 fay't k id so

t

ef u lost

At

2
Sittin Sitton's ion

t
twhen we used the positive definiteness of E Applying

Cavity Sihuartt with a on the Litt gives the vault
The proof for L is simile














































































































To finish the proof of coerivity we need two
more elements

First we need to show that the torn Fay and
It
2 are perturbative This require a very delicate
analysis of such terms but is the est with helpwith
our bookkeeping scheme and the above interpolation
theorems we can show that they satisfy the estimate

Haj Itai Il
Hae 2

t visit

7he

item the a term come fun either termof Oltl
or falter that have an extra power of r that we
can use

for smallness the latte com from thete w a vidir

Next we tal the 7th noun in the equation wit
the transition operators and

using the estimatefo
Fai it.it














































































































Lisa a ly se a
I ai y se s t E

yal
hi aj 2

yal s
t

silly se z t all thrill
7

At this point we want to prove the elliptic estimates
11 L saj a type a I 25 2112.121 2 t 2

La aj 2
yal 2 I W2j a

yal it 2

iiithe Lit Fo j e this is the elliptic estimate

7th It t
y tht

it it t y
Fo other value of j in a typical ellipticfashion we apply














































































































the estimate we proved with bn replaced by suitable weighted
derivative of themselves although we remark that the argument
is not straightforward because we peed to be careful with
the weights relying again on

H'J It't ti
Hsi t ti

In the end we obtain

I 152 2 di 21 Il
Hae dit

f til g111
7121 2

t all tr ill
if he 1 Ej Il

Concatenating these estimate produce the result El

Establishing coercivity of the energy is a key
ingredient fo our main result Without it we cannot comment

estimate for the linearized variables which can be obtained
because of the good structure of the linearized equation will
estimate for solution to the nonlinear problem B t it
still remain to show that the energy estimate














































































































themselves hold

I Ethanol E B rise

This is prove using idea similar to those in the
proof of coercivity namely we use o u bookkeeping sober to
keep trail of which teens are perturbative interpolation
and observe son cancelation Ultimately these ideas rely
on the fait that Isai sit satisfy the linearized
equations with source term that can be shown to be
perturbative In addition we need to be careful to
ensure that we can interpolate with only factor that
are linea in B We refer to EDIT for details

a
once again m recall that the proof have

to handle the vorticity as well what we neglected
here














































































































Remainingangunest

He i n make Jon brief comments on the
remaining

argument that are needed to establish local well p sadness
We construct solutions

using a time discretization that
involve the following steps

Regularitation

Transport iteration of the boundary at eat tin stir
Euler's method

what is interesting is that the separately each oftheir steps seem unbounded when tales together there is
an extra cancellation that come to rescue This is a direct
analogue of the hay cancellation an obsubel fo the
linearized equation

To control the iteration we need to translate
our

energy estimate to estimate at fixed time
we do so by reinterpreting the operator Dt as
operators at pixel tin obtained by reiterating the
equation














































































































Fo uniqueness we construct a suitable

funitional that track the distance between solutions
in part by measuring the distance between their boundaries
since different solutions are defined in different domain
This furitional is like mud in our approach inspired

by the energy for the linearized equation To show that
the functional is propagated by the flow we rely on

ideas of IT where a similar functional was
constructed to the treatmentof the analogous classical
problem

Continuous dependence on the data is established
with help of the ungularitation














































































































T.tgt.tt t i ittimmn
viscosity and or dissipation There are compelling reasons to
consider relativistin viscous fluid including

The quarkgluon plasma which is an ex ti stateofmatter that form in collision of heavy ions performed at particleaculeate like the attic and Lite It is well attested that
the quart gluon plasma in a relativistic

liquid with viscosity Cnn
Neutron star he

yes Rent stateof the art numericalsimulation strongly suggest that viscoy and dissipative can affect thegravitational wave
signal produced in collision of neuto stars andthat these effects would be measurable by the next generation of

gun itational ware detente CADHRs h HEAT
Because our focus here is on mathematical aspe ti ofrelativetin fluid theories we will not say more about the

physical motivation but we would be remiss not to stress that theabove two example show that two of the most advanced experimentalapparatus ever built hit and LIGot air proton will produce datathat
require may requirerelatiristi fluid ethriscosity for ibexplanation














































































































Ihop we will use the term viscosity and dissipation
interchangeably This is a common practice in the community

The first difficulty in studying relativistic rise fl its to findand appropriate model Unlike the case of a perfect
fl it there is no Languangian for the description of a relativisticvisco i fl it this is already the case for classicalfluids
Absent a Lagrangian there is no canonical way of deforming the
neugy momentum tensor Anatural thing todo in this case is to
modify the perfectfluid energy momentum tensorand baryon current
by adding tern that represent viscous effects

Tap I Gt R luau t p t R I tap t hap t Quetopha

Ja Inna t F

j

tnthe viscous correction to the energy density the wiser correctiont.tn m.a.h.a.t.boecostrity atheists
stiffly and the visconcourectifott
Indesity














































































































Next one needs to make modeling choice determining theviscousfluxes the first proposal is this dication was introduced

j

I 30andInnitcornute 30 girl
Q halt Ope tapir ha

followed by Lantau
Lifshift CLL who postulated the same

relation except fo
Ja nu E

h
Above 3 315 1 and 2 215,41 ane the coefficients ofbull and shea viscosity and he his ul is the heatconductivity

We will not discuss the physics arguments leading to those
choices other than saying that they are inspired by an attempt towrite
a covariant geometer version of the classical Marier stole equation



Later it became clear that the Eckart and Landau theoriesdonot lead to hyperbolic equations of notion Citta Pi as theya dud the charatterit
paps so

In partie la th corresponding equation are acausal i e they
admit faster than light propaction of information i clearviolation of relativity theory
we will not compute the charasteristic here but

simply
point out that part of the problem is that the operator
it'll Op that appear in Tra opt o contributes
significantly to the charanteristics This operator is
spatial and act like a Laplacian This is by design
a view of the attempt tofind a covariant generalization ofhi classical Navier Stoke theory It seem that was

preciselythe problem the Marier Stha equation a not hyperbolicthus one
should be seeking a filly relativist generalization

In addition the Eckart and Landau Lifshitt theories are
unstable Il stability here means med stability of solution



to the equation linearized about thermodynami
equilibrium state

haracterized
by S u u constant and viscous fl ten O Stabilityhoult heldfo viscous theories in that small perturbation

awayfrom af ilibrium should decay in tin d e to dissipation

Moregeneral notion of stability can also beconsidered
It turn o t that modeling viscous phenomena in

relativity is not a simple task Seemingly natural modeling4 ice mad ore th yes hept resulting in accusal andunstable tho ies CR
We remark that while carnality is a statement

to a general spacetime
hitting then there is coupling to Einstein

equation stability is typically studied in a Minhoushiballgron
In a general spacetime a stability analysis wold have toalso account for diffeomorphism invariants

We will next discuss the mathematical properties of twheavies that address th acausality and instability of relativisticviscous models



theDNMI
The Desicol Niemi Molnar Ri ahh IDNMn theory

gus hgl on plasma Fo historical reasons it is also referredi i iii i
is to treat the sisco s fluxes a new variables on the

samefootassinanusinawearenoninttaing new

Triablenerequationif motion should be introduced as

modeling choices based on physical assumptions These extraiiiiiiiiiiiiiiii
choices are needed because kinetic theory does not uniquelydetermine

Lifshitt can also be obtained f o hiet thou Cetus

The new equations for the viscousflute and 0,71 0
lead to the

Ienefuation Cotten

a da f t ft Pt I Van t Tia had 0



ft p t 1 arya t ai ti YS t Tiff t I Pray O

Tp n't I t I 30 n t dep flan x t go 0

Ty I u J T t t tr t 2461 Em Ti Ya

t Tay Tat r t t I or 0

subject to the constraint

Tap Tipa uhTi
p
I 0 Tj 0

in addition to the usual u i s t

Above II Ti Ti t Titi t t
an

project a 2 tenno into it u orthogonal symmetries trace free
part All B I

p A B A is symetrill
or HI O al is the shea tensor and the coefficient
I Tf T i dRA 7 it a tan tan ta r called transport

Ifficents are functions of s t in partielaw 3 and y ar th



coefficient of bulk and shear viscosity and Te t are harm a

relaxation time as it is the pressure p fist with ash p is

wi remark that above as did not consider thefullONMR equations We are considering the case where h so I so p and
the transport coeffilient depend only on s and Q o because thisis the case we treat in our results See column for thefullequation We also have 12 0 t t this is always the case forth DyMR Haoy

what should become apparent above is the sheer couplevityof the equations with the exception of the linen tern R and
I in the last two equations all term contribute to the
primipal part The system is large 22 22 see below Thus weare a large system with non diagonal primipalpart

In addition to being successfully used in the studyof the
quahgluon plasma mostly throng numerical simulations the Damn
equations enjoy the following good properties this pr.pe tie 4 It
for thefull brink patio that we did not state

Stability hold I i pink based on Citta des



Causality was established in the following particular
case under reasonale assumptions on the transport coefficient and

fluid variables for the equation linen ipad about thermodynamic
equilibrium again Divini based on itL2 Obs Itt dimension
CDUWM and in rotational

synn t y PWR FL

we next turn to the
question of causality in 31dimensions without symmetry assumption and local wellposedness

Notation The symmetry and tracefree co titianofthe altuto diagonalize it

If ej Agent A 9

will I eat orthonound
g eyes man diag 41,1 1

to h Ap d A
as
real and A th th 20

We can o de A IA A A E 0 A
We have the following result



aniiitiiiiii.itmmtt
A21 Ty Ty O I 3 dRA 7 IT I tan Tan tar 0

A2 9 0 p 20 s t p t E o note that I can
be negative

A I s t p t t t t 0 i 1,43

Then the following are efficient condition for causality
in stp I tail ta ht tie I II As 10
b 21 t t p R Ta IA 0

H I I 6 fit

t i to

el I Gy t d typ I t if tenth t

3tdfrf.tt
d

t II It A a

i



If 24 t typP t l a Cri 111,1 t 3tfep.tt teitt

t I past R 11,1 at 20

i i i
tht I tht2 it E I f th IA I t

3tterfte.tt
t I rest f IA I a

2 I I set eat It A Istifling ftp.iir.int
We abuse notates and deste s

as I by analogy with the
re feet ft it can b t as is not the soat speed fo it that the
Levanteristic which now also depend on the vis o s flutes

Moreover the following conditions are necessary f causality
a 24 t tap I Tan tail 0

I ft p t I I it tap R A 202T



4 tht t t

at that As 1 0 9,2 1,41 a d
d pts t I t Aa If't t he I II that 111109 I 1,23 a Fd

el I thetheR t
i t 22 t t I t 168e tailAi

t 3thet tt T
t istp t I tail as 0 it

i

fl pest e t Ai I I hit re t t i

th t in I t 16ft tri A

fretted ist p t P A I s I 0 i t

Finally made the sufficient condition alive the Cauchy roller
Imit local existence and

uniqueness for data is suitable Georey
paces These res et hold with or without couplingto Einstein's equation

Rk
Both the sufficient and the necessary condition can hesees tobe non e pty More importantly they are exported to holdfor soreasonable
although not all see below physical system



when the only visor flux is present is I the equation
simplify considerably and is this an it is possible to obtain
local existence and

uniqueness in Sobolev space with o with tco pling to Einstein's efuation
Recall that Garvey space E an the spacesof smoothtuition f s as that for every co party then exists a constantalso

such that I d first f Ci tall for every multi index a and
every X E K This is a generalization of analyte'sfunctions sinces I correspond to analytility

Poof Causality boils down to computing the system
charanteristic More precisely five sub luminal characteristics we
still need to show that the equation satisfy a domain of dependent
property but this can this be done with a Holmgren type ofargument
Tho we heal to analyte the root 5 of def A's 1 0
where A an th 22 22 matrices of the system written a

147 I BIE
when I I 15,4 I Tien n't Titi ti's As it can be seenfromthe alor equation the calculation of della's is natha no trivial
we do it theory a series of well thought out calculations Aft



finding della's we still need toanalyte the roots of the
corresponding polynomial

Causality is a stamest for every 3 Thus if we havea condition call it s for which we can find a single s thatsiolate the statement neededfor all 5 we have tht th
negation of S is a

necessary audition fo ca sality In
our case we can manage to do this this by taking f to be
nagualtie whose negation are the ones stated This is simple than
finding s ffinest condition because it suffine to find one such 5

For the sufficient condition a very caret l analysis
of the polynomial dat Ads needs to done This is possible

if some terms on the polynomial have the right sign which
is the case under the assumption we make

Local existence is based on the identity

at a datial I
what at it the transpose of the cofaitor matrixof thematrix a
I o r un this identity allow us to diagonalize the system
where the diagonal principal partwill this be the differential
opento corresponding to dot it sa This will be an operator



of oude 22 which in view of the causality conditions will be
a prodat of straitly hyperbola operators Some

of those operatorare repeated as dat tf's 1 0 has repeated roots this mean thatthe diagonalized operator is only weakly hyperbola Thus estimate
hill loss derivative in Sobolev spaces But we can still close
itimate is Gerry spaces because of the infinitedifferentiabilitynd controlled growth of functions on this spaces Or technique
o back t the seminal work of Loony and Olya a wallyhyperbolic
equation Lo See Di fo an overview of these techniques

a

The analysis of the chavanteristin in ou proof reveals
that the characteristin of the Drina of

alion are

flow lines with multiplinity 14

sound waves with singh multiplinity corresponding tothe roots i e a con l
shear waves three distinct chavanteristics of ultiplinity

t ca h I two root fo each characteristic i e each is a cone
Tor precisely this are possibly distant characteristics is thatthey might coincide for spent value of thefluid variably and
transport coeffinents b t without such spenifin finetuning they willin general be different



Not that the number of root add to 221
Our necessary conditions are particularly usefulforapplication because one can verifyat eachtimestep of numericalsimulation whether they hold If they donot then causality is beinviolated This was recently done is CPA Dtt it as where thauthors checked the causality conditions for numerical simulationof the quark gluon plasma and for d that up to 30 ofthe initial fluid call violate causality This raises questionsabout the validity of some conclusion about thequark gluonplasma derived based on these simulations



Inter
The Benfica Disco zi Noronha Kouta BDM t theory isthe culmination of a series of work CBDT1 BANJ BANG 4 itkathe goal is to construct a fully general relativist theory ofviscousfluid moaning a thoy that is caused stable i dude all fl it variabled visions flutes and is locallywell posed in Sobolev spaces with or

without coupling to Einstein's equations by fixing the
causality and

notability of the Eckart and Landa Lifshitz theories

We will not reprode here all arguments e played i the
construction of the Bork theory which are many and rely on ideas of
effectivefield theories his ti theory and thermodynamics ailed by
insights from geometry and hyperbola PDEs We will only nation that

the big idea is to have the fundamental printable ofcausality

ifeng.tti
making possibly unwarranted assumptions and only later investigate
causality

The Bora thoy is defined by the following energymomentum tensor and baryon current
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M is the chemical potential determined by the thermodynamic relation

if t If The coffin.at of shear and both
viscosity and the heat co d itivity an fusitionof n ands Collectively
the relaxation tina p't 3,2 and have called transportcoefficients obsew

tablricfrxeavdtandbotlsalnaa.ch



Rc Because the equation of motion 0 T so will l
second order in 15 s n the equation J J 0 is in fact a
constraint This constraint will be propagated by date such that

o
0

i
L 3 h 70

Then the system of Dark equation coupled to Einstein's
fuations is causal if andonly if

ft pl ta 2
21 pts is a s e uts ciao t J tGh th r t Rts Ipta

20

Tg pts c za t 3 t I t hrs t l pts it a
4pts ng a atHtsciao the l f 13 t 441
0
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the same result holds in a fixed bailgroud

We abuse notation and denote as 1 by analogywill
he pefeet ft it can b t as is not the soat speed fo it thathe chevantevistic which now also depends on the vis o sflutes

Kt Like in the case of the Damn equations the roof
reduces to an analysis of the clarateristics which in this case
ane given by dat the 3,5 0 where A are the mature



of the prislipal part of the system Here we have

differentiated IJM so ith u'd to obtain a recoil order
equation Als like in the case of the Divine equations we
need to car a judicious analysis of the roots

y
The analysis of the chavanteristin in ou proof reveals

that the characteristin of the Bank of lion are
flow lines with multiplicity 2 a rootfi endmultiplicity

Sound war's with singh multiplinity corresponding tothe roots i e a con l
second sound propagation of temperature perturbation

with a single characteristic
corresponding to the roots i e acon l

shear waves with n ltiplinity 3 a notefo eat
m ltiplinity i e e sone

Note that the number of root all t 124 6 equation ofsecond order Recall that we differentiated 95 0

Next we adves local existent a t uniqueness



t i i ii_
an initial date set fo the Bork Einstein syste soh that

Upr so hold for the initial date and iris 1 Assume that

the assumption of the presto theorem hold in strict formand
that the transport coefficient an analyte function of this argument
Finally assume that the quantities are in it and the
quantities i Itt 1 125 Then then exist a globally hyperbolic
development of the intial data which is unique if it is the
maximal devilment

Roof The proof is carried out through thefollowing stars

We work locally in wave coordinates and decompose
all deviation ist thai u and u o togonal and expand
these dice position in coordinates obtaining evolution forunfit targe t what can be turned into a

first order system
We show that the matrix of the principal part

of the resulting first order syste admits a complete set
of eigenvector We can than

diagonalit the principal part



The diagonalitation happen at the level of theprincipal symbol This need to be done at the level of theequation But because of national fustian that are obtained
in the eigenvalue and eigenvector the resulting equation
become pseudo differential when diagonalized The pseudo
differential diagonal system ad its good energy estimate
that can be used to produce solutions

Solution to the original equations are obtained through
an approximation by analytic soltion

G

Id Ou proof in fait shon that thesystawritten at a first ord sy ten is strongly hyperbolic

It remain to show stability This is accomplished
by applying the faltering thrown to the system offirst ordeequations derived in the proof of the pucrio theoven

TheoCBenfice D ti nhsc g.comside a syste of



first o de PDEs with constant coeffilients whose firstouter
derivation can be decomposed

in the diretions parallel and
o thgoal to the unit tin lil vectorfield u If the systis ca tal strongly hyperbolic and stable in th Lif 0th
it is stable in any fun connected to o by a Love ta
transformation

The proof can be found in crista We this show
that condition

fo stability is the Lrt can be found
consistent with the paris ca sality condition

The previous theorem was generalitedby Garassin Go
who in partie la removed the strong hypenholicity hypothesis

We can td with son observation on the physical
significance of the Bork theory

The Banh thery reproduces know physic relevant tothe study of the quart gluon plasma bott in some simple
settings The Boris tanto ha been derived from kinetic



theory BDM 1 42

Numerical simulation of the Dott theory have been
recently carried out by Pandya Preto in Pt Pandya Most
Pretoria PMP and Bantilan Bea Figueras CBD F fo
conformed fluids is one in two dimensions The main conclusion
is that

fo small viscosity which i the regime since
Theo ie are expected to be trusted Both and DNMR
mostly agree

Then observation in conjunction with the above mathematical

good feature of the Frefratiomplagodexistancei ii
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